给出一种基于电能计量芯片ATT7022C和LPC2138的电参数测量模块的设计方案。详细描述了硬件电路接口和电能计量芯片与ARM通信接口的实现过程。通过实验对芯片进行软件校表,实现了电参数的精确测量。设计的电参数测量模块具有实时显示和与上位机通信的功能。为了获得电网的电参数信息,本文采用电能计量芯片ATT7022C结合ARM微控制器设计电参数测量模块。该模块可以使用液晶实时显示数据,也可以把采集的电参数传输到上位机来对电网的状况进行实时监测。
1 ATT7022C芯片介绍
ATT7022C芯片是钜泉光电科技(上海)有限公司推出的一款高精度三相电能专用计量芯片。它适用于三相三线和三相四线的接线方式,其内部结构框图如图1所示。该芯片集成了7路二阶sigma-delta ADC,参考电压电路以及包括功率、有效值、功率因数、能量等的数字信号处理电路。芯片内置温度测量传感器,提供基波有功、基波无功校表脉冲输出;还具有ADC采样数据缓存功能,缓存长度为240,可以实时保存原始采样数据。同时芯片还支持单通道、双通道和三通道的同步采样功能,供用户进行采样数据的分析。芯片提供一个SPI接口与外部MCU进行数据传递,外部控制器只需要通过SPI总线对各寄存器进行读写操作,就可以得到三相电参数的值。为了得到精确的电参数数值,必须进行校表操作。芯片支持纯软件校表,经过校正的仪表,有功精度可高达0.5级,无功精度可达2级。
2 电参数测量模块设计方案
电参数测量模块的总体结构框图如图2所示。模块主要由电参数实时测量、LCD显示、存储、与上位机通信等部分组成。LCD液晶主要用来显示电压、电流、耗能、功率因数、时间、温度等参数。模块采用RS485总线或无线组网传输的方式把测量的各种电参数传输到上位机,对电网的运行状况进行实时的监测。
模块设计的目标是以较低能耗实时测量、显示电参数,并能够与上位机进行通信。这就要求处理器的运行速度要快、功耗要低。LPC2138芯片可以满足这个要求。它有2个SPI、I2C接口、多达47个可承受5 V电压的通用I/O口,以及带有独立电源与时钟源的实时时钟模块。
电能计量芯片复位时内部的能量寄存器将复位为0。如果发生意外断电,芯片中能量寄存器中的值将会丢失,设计时选用AT24C02芯片保存能量寄存器的值。在软件程序设计中,当负载消耗1度电或其他数据量的时候刷新一次存储器。
实时时钟采用ARM系统与外接电池共同供电的方式,当系统意外断电时,时钟模块可由外部电池供电,保证时钟的正常运行。值得注意的是,实时时钟初始化时,第一次把准确的时间写到时钟芯片后,时钟就开始正确地运行,然后应当把程序中的时钟初始化函数去掉,把整个程序再加载一遍。否则,模块每次复位都会对时钟初始化一次,这样时钟就不能正确地运行了。
3 硬件设计
3.1 模块外围电路设计
ATT7022C外围电路如图3所示。在设计时,为使电源的纹波和噪声减小到最低,要在芯片的各个电源引脚使用10μF和0.1μF电容进行去耦。在图3中,V1P/V1N、V3P/V3N、V5P/V5N分别是A、B、C三相的电流采集通道;V2P/V2N、V4P/V4N、V6P/V6N分别是A、B、C三相的电压采集通道。电路连接时,把ATT7022C的SP1口、SIG、CS、RESET分别与LPC2138的SPI口、P0.28、P0.29、P0.30相连进行通信。SIG为握手信号,控制器通过该引脚监测芯片的运行状况。SEL为三相电接线方式选择引脚。电能芯片内部有300 kΩ上拉电阻,当该引脚悬空时为三相四线接线方式,当该引脚接地时为三相三线的接线方式。在硬件电路连接时必须要注意的是,电能计量芯片与LPC2138的电源要共地,否则控制器读写芯片将会出错。
用户评论
共 0 条评论