然而,准确估算锂离子(Li-ion)电池的容量并非易事。锂离子电池的充电状态(SOC)受各种因素驱动,包括温度和放电率。电量计IC用于估算SOC的算法必须补偿各种问题,如自放电,电池单元的内部阻抗和电池老化。电量计IC必须将这些数据与电池的先前知识相结合,以准确估算SOC。
2019-03-29 08:24:00
5235 ![](https://file.elecfans.com/web1/M00/82/C4/pIYBAFw9tdaAPuJRAAIHS0tmMbE588.jpg)
MAX17301/11 IC是首款能够为单节Li+电池提供两级保护的电量计方案,可灵活配置并杜绝假冒与克隆。
2019-08-24 11:40:13
1808 关于MAX17041的技术支持中有这个图,不知道具体怎么设计两节锂电池的电量计,有哪位大神帮忙看一下。谢谢!
2017-02-03 00:02:41
。MAX17043/MAX17044采用成熟的Li+电池建模方案(称为ModelGauge™),在整个充/放电过程中连续跟踪电池的相对充电状态(SOC)。与传统的电量计不同,ModelGauge算法
2022-02-17 06:53:11
电量计是怎么测量电池电量呢?其实不难,一旦确定电池尺寸和容量,给我们一个样品,我们通过软件采集它的充放电曲线,即可搞个,再用我们的CW2051读取数据再跟MCU通讯即可读出电池电量。电路简单,调试简单。
2018-09-25 14:59:28
成品介绍本科毕设记录,填坑。采用了TI的BQ76940AFE+BQ34Z100-G1电量计+BQ76200高端驱动+mcu的方案,这是根据TI官方那个方案改的,链接如下:精确监测和 50μA 待机
2021-08-20 06:13:29
1.传统电量计介绍随着市场清洁能源的需求以及应用市场的需要,锂电池在日常生活中有着越来越广泛的运用。为了实现对电芯电量的检测,在以往很多的应用场景下,通常采用电压测试法来预估锂离子电芯的电芯容量
2022-11-10 06:14:00
Platform: RK3399OS: Android 8.1硬件环境:使用3串3并锂电池供电充电IC:BQ24610RGER电量计IC:CW2015问题11.CW2015 i2c通信失败解决方法
2021-11-17 06:57:08
通过实施独特的测量值校正技术,可以减少电量计误差电池温度和电压。这可以实现电池功率测量IC中的测量的高精度,其不需要电流感测电阻器。该电路板演示了VDFN8封装中的部件
2019-02-12 09:41:24
MCP1630 NiMH电池充电器和电量计应用图的典型应用。 MCP1630 / V是一款高速脉冲宽度调制器(PWM),用于开发智能电源系统
2019-05-14 06:57:01
电量计(gas gauge /fuel gauge)是用来计量显示电池电量,通常包括mAh剩余容量(RM),满充容量(FCC),百分比容量(SOC),电压,电流,温度等,部分电量计还包含放空,充满
2019-05-30 06:12:08
bq27411-g1(单节电量计) bq27541(单节电量计)bq27546-g1 (单节电量计)TI的这三款电量计哪个熟悉的?比如更换不同厂家的电芯之后,需要用上位机重新配置参数,这个具体如何配置
2021-03-02 14:53:59
`作为工程师的你,是不是一直想寻找这样一款好用的电量计,让你的设计方案能够轻松实现精准的电源管理?(说人话:我想要的电池管理,轻轻松松……)当然,可以通过花费大量时间进行定制特征分析,从而获得高精度
2018-09-26 16:07:36
。使用bq27441、bq27411或bq27421等Impedance Track电池能量检测器时,请留意确切的常用部件编号(GPN),确保延伸部分与正确的充电电压匹配。使用bq27426、电池电量计
2018-09-03 15:18:05
本应用文件介绍了TWS (True Wireless Stereo) 无线蓝牙耳机的电池电量计方案-RT9426,以高精度、高度整合、超低Iq的特性,完全符合TWS蓝牙耳机 (
2019-09-12 09:05:07
一个控制模块用锂电池供电,使用bq27210作为电量计检测锂电池的电量。在上方电路图中,锂电池的负极有一个接地。我的设计里,锂电池本身就是电源,那么锂电池的负极是不是就相当于地,也就是图中的接地可以省略了?
2020-11-24 16:16:57
的特性。想要了解电池特性,您将需要收集一些基础数据:一些关键参数如电压、电流、电池温度,电池在充电、放电和静置状态下性能随时间推移的变化。EVM的集成式电量计包含了一个模拟前端(AFE),以每秒至少
2018-08-29 16:17:50
)或一个多芯片解决方案;这二者均有其自身的优缺点。电池组中的保护功能也许是一个独立器件,或者包含在电量计或监视器中。出于冗余的目的,硬件和固件保护能够一起工作。监视器依赖主机实现通信的目的,而一个电池组需要具有某种电量计量算法的电量计或MCU。
2018-09-05 15:23:58
对于串联连接的电池数量,电池电量计行业始终是二选一的状态。您在设计时可以选择单节电池电量计或2-4个串联连接的多节电池电量计。如果您的所有设计属于1S或4S电极,则二选一方案完全能够应付;但如用
2018-09-03 15:17:59
怎样更好地为可穿戴设备选用准确的电量计?
2021-03-09 07:56:36
如下图所示,CC阶段4A持续充电时间达到41分钟,远远长过前一次测试的普通的充电方案。 基于两种充电方案的测试结果对比,利用BQ28z610的电量计芯片和双节电池的充电控制芯片BQ24725A实现了对双
2019-09-19 09:05:06
并不能估计电池容量值(mAh)。它的计算方式是根据电池电压和开路电压之间的动态差异,借着使用迭代算法来计算每次增加或减少的荷电状态,以估计荷电状态。相较于库仑计量法电量计的解决方案,动态电压算法电量计
2019-03-29 06:00:00
TI开发套件Battery Management Studio (BQstudio)提供了一套完整的可协助评估,设计,配置,测试TI各类电源管理产品的工具,可用于协助使用者进行电量计,充电芯片,无线
2022-11-04 07:15:48
应用Impedance TrackTM技术的电池电量计同时采用了库伦算法和电池电压算法进行电量计算,可为目前市面上各种类型的蓄电池提供最精准的充电指示。 在电池管理电量计论坛中,我们发现这样一个
2022-11-16 06:13:20
由于很多因素会影响到电量计IC,预测锂离子电池的剩余电量会很难;气温较低就是其中一个因素。市面上有几种电量计量IC;这些电量计量IC有几个特性,提供寒冷天气下运行时的准确性能,而这正是我将在这篇博
2022-11-17 07:54:55
如果你第一次使用电量计不知道从何入手,如果你看到那么多寄存器参数不知道配置哪个,如果你面对电量计技术参考手册一两百页有点迷茫,那么这个文档或许可以帮到你。下面让我们一起从零开始,以最小配置快速让
2022-11-10 06:30:04
第1部分:测量和测量精度 电池量表(通常称为气体或燃料量表)从电池获取数据以确定其中剩余多少电量。对于量表的测量精度,不应曲解计量精度。量表准确报告充电状态和预测剩余电池容量的能力取决于各种测量
2019-07-23 04:45:05
由于很多因素会影响到电量计IC,预测锂离子电池的剩余电量会很难;气温较低就是其中一个因素。市面上有几种电量计量IC;这些电量计量IC有几个特性,提供寒冷天气下运行时的准确性能,而这正是我将在这篇博
2018-09-03 15:47:03
的电池内阻平均值,是通过将开路电压与长时间内负载或充电条件下的测量电压进行比较实现的,一般随电池使用时间的推移逐渐增大。延长运行时间、提高性能为进一步增强用户体验,电量计IC可提供一些主动电池管理能力
2019-03-25 21:44:46
大家好!给大家介绍一款无线蓝牙耳机的电池电量计方案-RT9426。RT9426 是单节锂离子/锂聚合物电池使用的电量计产品,适合使用在电池包或是系统端,负责电量的计算和电池状态管理工作。RT9426
2019-10-15 11:22:48
昂科烧录器支持Analog
Devices亚德诺半导体的超低功耗、独立式电量计IC MAX17201X
芯片烧录行业领导者-昂科技术近日发布最新的烧录软件更新及新增支持的芯片型号列表,其中昂科发布
2023-08-10 11:54:39
目前正在设计智能手环相关的应用。手环的功能需要显示电池电量,按照我以往的经验,为了要精确显示电池的电量状态,需要添加一个库仑计IC。但是,我搜索了很多手环的设计资料,发现并没有电量计IC在其中。难道都是用ADC脚检测电池电压的方式来实现对电池电量的状态的监控吗?对此表示疑问,希望各位有经验的帮忙答疑
2020-12-02 10:41:02
实现长寿命提供了帮助。这里提到的长寿法要如何实施是值得思考的,但我并不想在这里说出答案,避免剥夺了读者自己思考的机会。设计更好的电池电量计的方案其实就隐藏在上面已经述及的内容中,只是其实施其实也是个大
2019-09-18 09:05:13
本帖最后由 gk320830 于 2015-3-7 16:00 编辑
电池电量计的原理与计算
2012-08-09 21:46:19
电池的电量计算电池厂家提供不了开路电压对应容量的OCV表,但是这个项目又必须正确的显示电池的电量,大家是如何做到电量的大概测量的(节省成本不用电量计),用的是开路电压法估算(精度要在80%以上,在电池没有负载,同时有准确的OCV表是可以做到这个精度的)
2021-08-12 18:37:57
对于串联连接的电池数量,电池电量计行业始终是二选一的状态。您在设计时可以选择单节电池电量计或2-4个串联连接的多节电池电量计。如果您的所有设计属于1S或4S电极,则二选一方案完全能够应付;但如用
2022-11-17 07:38:08
电压之间的动态差异,借着使用迭代算法来计算每次增加或减少的荷电状态,以估计荷电状态。 相较于库仑计量法电量计的解决方案,动态电压算法电量计不会随时间和电流累积误差。库仑计量法电量计通常会因为电流感测误
2017-04-19 15:51:56
,实时监测电池的阻抗变化,从而可以较准确地预测放电截止点,实现了1~2%的电量检测精度,是目前最精确的电量计算算法。 TI针对不同的应用场景,推出了一系列的电量计产品,广泛应用于各领域知名品牌客户,得到
2022-11-03 08:20:52
电量计(gas gauge /fuel gauge)是用来计量显示电池电量,通常包括mAh剩余容量(RM),满充容量(FCC),百分比容量(SOC),电压,电流,温度等,部分电量计还包含放空,充满
2021-09-15 06:43:55
MAX17301–MAX17303/MAX17311–MAX17313为24μA IQ独立式电池侧电量计IC,具有保护器和可选的SHA-256安全认证,适用于单节电池锂离子/聚合物电池。IC监测电池
2023-06-14 14:28:41
MAX17301–MAX17303/MAX17311–MAX17313为24μA IQ独立式电池侧电量计IC,具有保护器和可选的SHA-256安全认证,适用于单节电池锂离子/聚合物电池
2023-06-14 14:32:41
MAX17261为超低功耗电量计IC,采用Maxim ModelGauge™ m5算法。IC利用外部电阻分压器监测多节串联电池组。ModelGauge m5 EZ算法不要求对电池进行特征分析,很容易
2023-06-14 14:41:16
MAX17262为5.2µA超低工作电流电量计,采用Maxim ModelGauge™ m5 EZ算法。MAX17262监测单节电池,集成内部检流,可检测高达3. 1A的脉冲电流。IC优化
2023-06-14 14:46:20
MAX17263为超低功耗电量计,采用Maxim ModelGauge™ m5 EZ算法。MAX17263利用外部电阻分压器监测单节电池或多节串联的电池组。IC驱动3至12颗自动计数LED,在按键被
2023-06-14 14:48:35
MAX17260为超低功耗电量计IC,采用Maxim ModelGauge™ m5算法。IC监测单节电池,支持高边和低边电流检测。ModelGauge m5 EZ算法不要求对电池进行特征分析,很容易
2023-06-14 14:55:16
MAX17047采用Maxim ModelGauge™ m3算法,整合了库仑计数器的短期高精度、高线性度特性和基于电压的电量计技术的长期稳定性等优势,温度补偿提供业内领先的计量精度
2023-06-14 15:21:13
MAX17058/MAX17059 IC为小尺寸电量计,用于手持及便携产品的锂离子(Li+)电池组。MAX17058配置工作在单节锂电池;MAX17059配置工作在2节串联锂电池。IC采用成熟
2023-06-14 15:24:04
MAX17048/MAX17049 IC为小尺寸、微功耗电流电量计,用于手持及便携产品的锂离子(Li+)电池组。MAX17048配置工作在单节锂电池;MAX17049配置工作在2节串联锂电池。IC
2023-06-14 16:17:01
MAX17048/MAX17049 IC为小尺寸、微功耗电流电量计,用于手持及便携产品的锂离子(Li+)电池组。MAX17048配置工作在单节锂电池;MAX17049配置工作在2节串联锂电池。IC
2023-06-14 16:19:14
MAX17043/MAX17044为结构紧凑、低成本、主机侧电量计,用于手持及便携产品的锂离子(Li+)电池的电量计量。MAX17043配置为单节锂电池计量,MAX17044配置为两节2S电池组计量
2023-06-15 09:29:14
MAX17043/MAX17044为结构紧凑、低成本、主机侧电量计,用于手持及便携产品的锂离子(Li+)电池的电量计量。MAX17043配置为单节锂电池计量,MAX17044配置为两节
2023-06-15 09:32:01
MAX17040/MAX17041为结构紧凑、低成本、主机侧电量计,用于手持及便携产品的锂离子(Li+)电池的电量计量。MAX17040配置为单节锂电池计量,MAX17041配置为两节2S电池组计量
2023-06-15 10:18:08
MAX17040/MAX17041为结构紧凑、低成本、主机侧电量计,用于手持及便携产品的锂离子(Li+)电池的电量计量。MAX17040配置为单节锂电池计量,MAX17041配置为两节2S电池组计量
2023-06-15 10:20:33
MAX17058/MAX17059 IC为小尺寸电量计,用于手持及便携产品的锂离子(Li+)电池组。MAX17058配置工作在单节锂电池;MAX17059配置工作在2节串联锂电池。IC采用成熟
2023-06-16 11:59:43
MAX17301–MAX17303/MAX17311–MAX17313为24μA IQ独立式电池侧电量计IC,具有保护器和可选的SHA-256安全认证,适用于单节电池锂离子/聚合物电池。IC监测电池
2023-06-16 13:50:56
MAX17301–MAX17303/MAX17311–MAX17313为24μA IQ独立式电池侧电量计IC,具有保护器和可选的SHA-256安全认证,适用于单节电池锂离子/聚合物电池
2023-06-16 13:53:13
MAX17301–MAX17303/MAX17311–MAX17313为24μA IQ独立式电池侧电量计IC,具有保护器和可选的SHA-256安全认证,适用于单节电池锂离子/聚合物电池。IC监测电池
2023-06-16 14:02:19
MAX17301–MAX17303/MAX17311–MAX17313为24μA IQ独立式电池侧电量计IC,具有保护器和可选的SHA-256安全认证,适用于单节电池锂离子/聚合物电池。IC监测电池
2023-06-16 14:04:39
MAX17301–MAX17303/MAX17311–MAX17313为24μA IQ独立式电池侧电量计IC,具有保护器和可选的SHA-256安全认证,适用于单节电池锂离子/聚合物电池。IC监测电池
2023-06-16 14:06:30
MAX17301–MAX17303/MAX17311–MAX17313为24μA IQ独立式电池侧电量计IC,具有保护器和可选的SHA-256安全认证,适用于单节电池锂离子/聚合物电池。IC监测电池
2023-06-16 14:08:30
MAX1720x/MAX1721x为超低功耗、独立式电量计IC,采用Maxim ModelGaugeTM m5算法,无需主机进行配置。该特性使MAX1720x/MAX1721x成为优异
2023-06-16 15:17:48
MAX1720x/MAX1721x为超低功耗、独立式电量计IC,采用Maxim ModelGaugeTM m5算法,无需主机进行配置。该特性使MAX1720x/MAX1721x成为优异
2023-06-16 15:19:57
MAX1720x/MAX1721x为超低功耗、独立式电量计IC,采用Maxim ModelGaugeTM m5算法,无需主机进行配置。该特性使MAX1720x/MAX1721x成为优异
2023-06-16 15:29:00
MAX1720x/MAX1721x为超低功耗、独立式电量计IC,采用Maxim ModelGaugeTM m5算法,无需主机进行配置。该特性使MAX1720x/MAX1721x成为优异
2023-06-16 15:39:35
摘要:大多数手持产品缺乏精确的电池充电监测器(“电量计”),许多人误认为设计一个精确的电量计是一件非常困难的事情。本文所介绍的内容打破了这一神话,讨论了在各种温度
2009-04-24 15:13:02
1465 ![](https://file1.elecfans.com//web2/M00/A4/CE/wKgZomUMNcOAZhPEAAAxpGdfYbo069.gif)
摘要:DS278x系列独立式电量计为可充电锂离子电池或锂聚合物电池提供了精确估算剩余电量的方法。该系列电量计内置电流失调(COB)寄存器,设计人员可以利用它来消除IC电流ADC所引
2009-05-09 09:18:37
1645 ![](https://file1.elecfans.com//web2/M00/A4/E1/wKgZomUMNg-ALlMsAAALFrDKZpU907.gif)
MAX17043/MAX17044为结构紧凑、低成本、主机侧电量计,用于手持及便携产品的锂离子(Li+)电池的电量计量
2010-09-30 09:07:57
4636 ![](https://file1.elecfans.com//web2/M00/A5/BA/wKgZomUMOc6AQh-1AAC0DvuTAB0466.jpg)
MAX17058/MAX17059 IC为小尺寸电量计,用于手持及便携产品的锂离子(Li+)电池组。MAX17058配置工作在单节Li+电池;MAX17059配置工作在2节串联Li+电池。
2013-08-23 16:00:09
64 随着2S系列电量计产品的发布,您不再局限于二选一的选择过程,而是可以设计出一个集精确测量、安全和电量平衡三种优势于一体的最佳电量计解决方案。
2018-07-11 09:55:00
1504 您可能听说过“电量计一点通”、“使用方便的电量计”、“电量计附加值产品”,甚至是“只需轻松点击即可使用电量计”等宣传措辞。事实上,要制作出“好”的电池电量计绝非易事,但是德州仪器的工程师们成功地
2018-07-10 17:56:00
1980 ,如老化电池的电池总电量较低,或遇上自放电等事件。设计工程师在为其设备选择可靠的电量计量IC时,需要考虑到这些影响。今天我们会讨论安森美半导体的一款电池电量计量IC方案,它提供高精度、高能效的测量,延长电池在多种便携设备的使用时间。
2018-06-26 15:59:00
4096 ![](https://file.elecfans.com/web1/M00/53/24/pIYBAFseDTaAT26fAAAruLzSAvo385.jpg)
Maxim的电量计能够精确计量电池电量,获得最长的电池工作时间。Maxim的ModelGauge电量计具有优异的长期稳定性,ModelGauge m3技术通过连续微调消除电池充电状态(SOC)的突变
2018-06-22 10:35:00
3586 Avnet-Maxim 共同讨论电池电量计方案
2020-05-30 08:53:00
2177 了解使用电池电量计监测和报告电池电量状态的基本原理。我们回顾测量电池剩余电量的现代化方法、精度方面的注意事项,以及ModelGauge™电量计技术能够解决的常见挑战。
2018-10-08 03:46:00
20559 1.8 TI BMS 方案 - 高串数锂电电量计介绍和应用
2019-04-15 06:58:00
3657 ![](https://file.elecfans.com/web1/M00/84/9D/pIYBAFxRExiADBruAAA061KAAJ4573.jpg)
而下降,如老化电池的电池总电量较低,或遇上自放电等事件。设计工程师在为其设备选择可靠的电量计量IC时,需要考虑到这些影响。今天我们会讨论安森美半导体的一款电池电量计量IC方案,它提供高精度、高能效的测量,延长电池在多种便携设备的使用时间。
2019-03-19 06:10:00
3150 ![](https://file.elecfans.com/web1/M00/86/6A/pIYBAFx4kL6AA914AAA-SINM1nk208.jpg)
精度、最低功耗的主机端电池电量计。 在传统方法中,电量计需要根据特定的应用对每个电池型号进行大量的特性描述,从而获得优异性能。这意味着客户需要在设计周期中增加数周的时间和资源来实现复杂的电池特性描述。而MAX17055通过ModelGauge m5 EZ配置,消除了对电池特性的依赖性,极大缩短了客户产品的上市时间。
2020-03-26 15:25:26
1510 用高准确度 60V 电量计进行电量测量
2021-03-20 15:45:01
10 单元阵列中的噪声拾取可能会在包含 ADC 和信号调理组件的电量计电压和电流测量系统中引起读取噪声。
2022-05-01 16:21:00
5561 ![](https://file.elecfans.com//web2/M00/3D/8F/pYYBAGJafHyAYInbAADKol8dYzQ922.png)
很多人说电量计很难用,既要懂电池知识、又要懂电路知识,既要懂硬件、又要懂软件、 还要懂算法;很多人说希望得到电量计的系统性的应用指导;很多人说希望更多的电量计 中文资料。因此,我决定写这本
2022-07-27 16:39:01
38 TI电量计中文指导,比较基础的指导关于电量计方面的知识。
电量计的介绍、电量计的开发、阻抗跟踪、CEDV电量计开发。
电量计的计算法、评估电量计的精度、RSOC更新机制以及跳变原理、算法均衡等。
2022-10-19 16:05:43
0 一起试试:如何使用阻抗追踪电量计
2022-11-02 08:16:26
6 通过充电状态测量进行精确的电量计量
2023-01-03 09:45:12
956 ![](https://file.elecfans.com/web2/M00/87/66/poYBAGOuOcuAHQWQAABi7hEUoOU10.jpeg)
达拉斯半导体电量计为测量和累积通过应用的电流提供了一种极其精确的方法。测量技术的精度取决于正确测量外部检测电阻两端的压降。如本应用笔记所述,电阻放置和走线布线对于实现精度目标非常重要。
2023-01-11 11:43:19
383 ![](https://file.elecfans.com//web2/M00/8A/99/pYYBAGO-MFqALazaAAA9wYRe6kE958.gif)
些应用中,电量计不得成为功耗的主要来源。电池的不可充电特性意味着电量计永远没有机会了解电池的容量,必须通过精确的库仑计数等技术来实现精度。对于某些化学品,平坦的电压曲线也意味着直接电压查找方法不可用。
2023-02-21 16:13:45
1276 ![](https://file.elecfans.com//web2/M00/93/55/pYYBAGP0fTuAKExSAABHkGJGdc8526.png)
往往要忍受高度不准确、低分辨率的指示器。本文讨论了准确测量充电水平的各种障碍,并介绍了设计人员如何在电池供电应用中实现精确的电量计。
2023-03-22 11:21:16
1505 ![](https://file.elecfans.com//web2/M00/9A/44/pYYBAGQadCiAcooiAABS9GoFP0g866.gif)
Maxim开发的算法ModelGauge m5 EZ算法,对于大多数常见的锂电池,无需表征即可生成准确的电池SOC估算值。该算法使用针对特定应用进行调整并嵌入在电量计 IC 中的电池模型。
2023-06-29 15:32:37
335 将电量计 IC 集成到电池供电设计中,提供了一种相对简单的方法来管理老化的电池。除了许多电量计提供的充电状态(SOC)数据外,现代电量计(如Maxim ModelGaugem5 IC)还提供以下数据点:
2023-06-29 16:26:49
491 ![](https://file1.elecfans.com/web2/M00/8B/B5/wKgZomSdSz2ATO1cAAHxXDqsJp0762.png)
ModelGauge m5 电量计包括一种复杂的算法,可将电池电压、电流和温度的原始测量值转换为准确的充电状态 (SOC%)、绝对容量 (mAhr)、空电量和充满时间(充电时)数字。稳健的算法检测电池容量的最小变化,以更准确地预测电池在容量迅速下降之前将持续多长时间。
2023-06-30 11:40:57
599 ![](https://file1.elecfans.com/web2/M00/8B/C2/wKgaomSeT1CAcRKlAAHSJtLyD8c229.png)
电量计SilergyBatteryGaugeSolution|电池电量计对于手机、笔记本电脑、对讲机等带电池产品,能够精准知道其电池电量状态(SOC,以下简称SOC)、电池健康度(SOH,以下简称
2024-03-06 08:18:28
121 ![](https://file.elecfans.com/web2/M00/44/F1/poYBAGKIQICAEGYpAAA2Yp6YtLw763.jpg)
评论