毫米波雷达前端系统设计
1 引 言
毫米波的工作频率介于微波和光之间,20世纪90年代第二阶段的微波毫米波集成电路规划取得重大突破后,大功率毫米波功率源、介质天线、集成天线、低噪声接收机芯片等相继问世,使毫米波雷达发生了更新换代的变革,并且大大拓宽了它的应用领域。
2 毫米波雷达前端系统设计原理
利用伪随机编码信号良好的自相关特性,低距离副瓣,获得高的测量精度和距离分辨率。同时利用正弦波调频信号体制的回波信号功率为距离函数的特点来有效地抑制近区杂波干扰。图1为采用伪随机编码调相和正弦波调频这两种连续波信号的复合调制体制框图。
16 GHz高频振荡器产生16 GHz±10 MHz微波振荡信号,经正弦调制后信号送到调相器,进行随机编码调相。调相后的信号通过功分器,一部分放大后由发射天线辐射出去,另一部分泄漏信号加到信号混频器。经天线辐射出去的射频信号照射到目标后,目标反射的回波信号由天线接收,回波信号送到信号混频器与泄漏信号混频并滤除高频信号,得到视频信号。视频信号放大后经过数字信号处理就可以送到耳机从而直接监听目标运动情况、速度和状态。
如图1所示,雷达前端系统的主要组成部分有振荡器、0/π调相器、功率放大器以及混频器。
2.1 介质振荡器
介质振荡器采用如图2所示的GaAs场效应管介质反馈型振荡器。GaAs场效应管介质反馈型振荡器可以采用漏极输出或源极输出两种方式,为了获得尽可能大的输出功率,选用漏极输出、源极直接接地的形式。
通常选用的介质振荡器模式有TE01δ模、TM01δ模和HE11δ模,但在与微带耦合时一般选用TE01δ模,因为其电磁场是圆对称的,与微带耦合非常方便,而且振荡模式稳定。本文选用圆柱形介质谐振器,其直径D=3.423 mm,高度h=2.28 mm。参数为:f=16 GHz,εr=40。实际电路中,在谐振器与微带基片之间垫入一低介电常数、低损耗的介质片,用来减少微带基片和金属接地板对谐振器Q值和温度性能的影响。
2.2 0/π调相器
0/π 调相器采用开关线调相器。开关线调相器的电原理图如图3所示。L1,L2是两条长度不同的微带传输线(或者是其他任意微波传输线),D1,D2,D3,D4是4只性能一致的PIN二极管。当两边二极管互补偏置时,二极管D1,D2导通时,D3,D4处在截止状态,载频信号经L1 传输。反之,D1,D2截止时,D3,D4处在导通状态,载频信号经L2传输。很显然,由于L1和L2长度不同,因而引起相移作用。
设较短的路径为L1,较长的路径为L2。则调相相位为:
- 第 1 页:毫米波雷达前端系统设计
- 第 2 页:功率放大器
本文导航
非常好我支持^.^
(3) 60%
不好我反对
(2) 40%
相关阅读:
- [移动通信] 5G 3GPP全球频谱介绍 2023-10-24
- [RF/无线] 雷达干扰技术分类有哪些 2023-10-24
- [电子说] 地铁站台内基于固体雷达的多种安全解决方案 2023-10-24
- [电子说] 突发!国产激光雷达第一厂商疑似成为特斯拉供应商?! 2023-10-24
- [电子说] 功率放大器的基本原理、分类、工作模式和应用 2023-10-23
- [电子说] 安信可新款雷达模组Rd-03E精准测距效果 2023-10-23
- [电子说] 英飞凌收购3db Access以追求更广泛的UWB潜力 2023-10-23
- [电子说] RoboSense激光雷达E1荣膺“2023金辑奖中国汽车新供应链百强” 2023-10-23
( 发表人:小兰 )