您好,欢迎来电子发烧友网! ,新用户?[免费注册]

当前位置:电子发烧友网 > 图书频道 > 仪器 > 《医学影像设备》 > 第5章 核磁共振成像设备

第2节 核磁共振原理

一、原子与原子核
    自然界中的任何物质都是由分子或原子组成的,分子是由原子组成的,如水分子H-O-H,是由2个氢原子与1个氧原子组成。原子由原子核与核外电子组成,核外电子数不同的原子具有不同的化学与物理性质,分属于不同的化学元素,化学元素周期表反映了核外电子的排布规律。原子核由质子和中子组成,质子有电荷,质子数等于核外电子数。对于一种化学元素,原子核中的质子数是一定的,但中子数有不同。同一化学元素中子数不同的原子属于不同的核素,不同的核素其物理性质是不同的。比如氢元素有3种核素:1H、2H 、3H,它们的原子核的组成分别是1质子、1质子和1中子、1质子和2中子,它们的共同点是原子核内都有一个质子核外有一个电子,因此都属于氢元素。对于某一种化学元素,不同核素在自然界,的含量是有很大差别的。比如1H与2H分别为99.895%与0.015%,3H是一种不稳定的核素,只有在特定的条件下才能生成,并且很快便会衰变。原子核除了它的构成不同,其中质子带有电荷以外,还有一部分核具有磁性,核磁共振就是研究这部分具有磁性的原子核。 



图5-1 核磁可看作小磁棒
哪些原子核具有磁性呢?氢原子核中只有一个质子,质子有沿自身轴旋转(自旋)的固有本性,质子距原子核中心有一定距离。因此质子自旋就相当于正电荷在环形线圈中流动,在其周围会形成一个小磁场,此即核磁,如图5-1所示。
     不仅质子自旋可产生磁场,中子的自旋也可产生磁场,后者似乎难以理解,推测这种现象是中子内有几个正、负电荷相互补偿,因此中子自旋也相当于电荷在线圈中流动。如原子核含有的质子和中子数均为偶数,则其自旋所产生的磁场相互抵消,为非磁性。原子核含有奇数(不成对)的质子或中子,其自旋可产生磁场,也就是说凡是质子数或中子数,或者二者都为奇数的原子核都有磁性,如图5-2所示。
     生物组织中含有1H、13C、19F、23Na、311 P等元素,有磁性的元素约百余种。但在现今MR中研究和使用得最多的为1H,这有两个原因,一是1H为磁化最高的原子核,二是因为它占活体组织原子数量的2/3,形成 MRI的1H原子大部分位于生物组织的水和脂肪中。因1H只有一个质子,故1H的MRI影像也称为质子像,MRI文献中未特别注明者,均指的是生物组织的1H像。 

图5-2 质子数或中子数为奇数的原子核带有磁性

二、拉莫尔进动
    含有奇数质子或中子的原子核(以1H为代表)自旋在其周围产生磁场,如同一个小磁体有南北极。磁场用磁矩(M)来表示,磁矩有其大小、方位和方向,如图5-3所示。 

图5-3 磁矩有大小,方向和方位

    无外加磁场时,质子群中的各个质子任意方向自旋,其磁矩相互抵消,因而单位体积内生物组织的宏观磁矩M=0,如图5-4所示。
    如将生物组织置于一个大的外加磁场中(又称主磁场,用矢量B0表示),则质子磁矩方向发生变化,结果是较多的质子磁矩指向与主磁场B0相同的方向,而较少的质子磁矩与B0方向相反,而与B0方向相反的质子具有较高的位能 。 常温 

图5-4 自由质子的磁矩
下, 顺主磁场排列的质子数目较逆主磁场排列的质子稍多,因此,出现与主磁场B0方向一致的净宏观磁矩(或称为宏观磁化矢量)M,如图5-5所示。
    此时,氢原子核在绕着自身轴旋转的同时,又沿主磁场方向B0作圆周运动,将质子磁矩的这种运动称之为进动,如图5-6所示。 

图5-5 净磁矩与主磁场同相

    在主磁场中,宏观磁矩象单个质子磁矩那样作旋进运动,磁矩进动的频率符合拉莫尔(Larmor)方程:
                                 
f=rB0/2π
式中:f ---- 进动的频率
      B0 ----主磁场强度
  r ---- 旋磁比(对于每一种原子核是恒定的常数)
    换句话说,在主磁场B0s一定的情况下,其原子核的旋进频率是一定的,氢原子核在 
 



图5-6 质子磁矩的进动
不同磁场中的共振频率是不同的,如主磁场为1.0 T时,氢原子核的旋进频率为42.6MHz。沿主磁场旋进着的质子就好像在重力作用下旋进着的陀螺,如图5-7所示。

三、施加射频脉冲后(氢)质子状态 

图5-7 旋进的质子与旋进的陀螺的比较

    当生物组织被置于一个大的静磁场中后, 其生物组织内的氢质子顺主磁场方向的处于低能态
而逆主磁场方向者为高能态。在低能态与高能态之间根据静磁场场强大小与当时的温度,势必要达到动态平衡,称为“热平衡”状态。这种热平衡状态中的氢质子,被施以频率与质子群的旋进频率一致的射频脉冲时,将破坏原来的热平衡状态,从微观上讲,将诱发两种能态间的质子产生能态跃迁,被激励的质子从低能态跃迁到高能态,出现核磁共振。从宏观上讲,
受到射频脉冲激励的质子群偏离原来的平衡状态而发生变化,其变化程达的位置度取决于所施加射频脉冲的强度和时间。施加的射频脉冲越强,持续时间越长,在射频脉冲停止时,M离开其平衡状态B0越远。在MRI技术中使用较多的是90°、180°射频脉冲。施加90°脉冲时,宏观磁化矢量M以螺旋运动的形式离开其原来的平衡状态,脉冲停止时,M垂直于主磁场B0,如图5-8所示。 

图5-8 射频脉冲作用质子磁矩后的进动路径及到达的位置 
 
图5-9 90°脉冲后横向磁化矢量达到最大

    如用以B0为Z轴方向的直角座标系表示M,则宏观磁化矢量M平行于XY平面,而纵向磁化矢量Mz=0,横向磁化矢量Mxy最大,如图5-9所示。
    这时质子群几乎以同样的相位旋进。施加180°脉冲后,M与B0平行,但方向相反,横向磁化矢量Mxy为零,如图5-10所示。 

图5-10 180°脉冲后的横向磁化分量为0

   
    总之,施加90°、180°或其他角度的射频脉冲后,人体组织内受检部位的氢质子因接受了额外能量,其磁化矢量偏离了静磁场方向而转动90°、180°或其他角度,部分处于低能级的氢质子因吸收能量而跃迁到高能态,这一接收射频场电磁能的过程就称为磁共振的激励过程。在激励过程中氢质子吸收了额外的电磁能,由低能态升入高能态,从而进入了磁共振的预备状态。
    四、射频脉冲停止后(氢)质子状态
    脉冲停止后,宏观磁化矢量又自发地回复到平衡状态,这个过程称之为“核磁弛豫”。当90 °脉冲停止后,M仍围绕B0轴旋转,M末端螺旋上升逐渐靠向B0,如图5-11所示 。
    图5-11 90°脉冲停止后宏观磁化矢量的变化 
 

图5-11 90度脉冲停止后宏观磁化矢量的变化

    在脉冲结束的一瞬间,M在XY平面上分量Mxy达最大值,在Z轴上分量Mz为零。当恢复到平衡时,纵向分量Mz重新出现,而横向分量Mxy消失。由于在弛豫过程中磁化矢量M强度并不恒定,纵、横向部分必须分开讨论。弛豫过程用2个时间值描述,即纵向弛豫时间(T1)和横向弛豫时间(T2)。
    1.纵向弛豫时间(T1)
    90°脉冲停止后,纵向磁化矢量要逐渐恢复到平衡状态,测量时间距射频脉冲终止的时间越长,所测得磁化矢量信号幅度就越大。弛豫过程表现为一种指数曲线,T1值规定为Mz达到最终平衡状态63%的时间,如图5-12示。 

图5-12 纵向弛豫时间T1

    T1进一步的物理意义的理解,只有从微观的角度分析。由于质子从射频波吸收能量,处于高能态的质子数目增加,T1弛豫是质子群通过释放已 吸收的能量,以恢复原来高低能态平衡的过程, T1弛豫也称为自旋-晶格弛豫。
     2.横向弛豫时间(T2)
     90°脉冲的一个作用是激励质子群使之在同一方位,同步旋进(相位一致),这时横向磁化矢 

图5-13 90度脉冲停止后宏观磁化矢量的变化
量Mxy值最大,但射频脉冲停止后,质子同步旋进很快变为异步,旋转方位也由同而异,相位由聚合一致变为丧失聚合而各异,磁化矢量相互抵消,Mxy很快由大变小,最后趋向于零,称之为去相位。横向磁化矢量衰减也表现为一种指数曲线,T2值规定为横向磁化矢量衰减到其原来值37%所用的时间,如图5-13所示。
    横向磁化矢量由大变小直至消失的原因是:组织中水分子的热运动持续产生磁场的小波动,周围磁环境的任何波动可造成质子共振频率的改变,使质子振动稍快或稍慢,使质子群由相位一致变为互异,即质子热运动的作用使质子间的旋进方位和频率互异,但无能量交换纵向弛豫。这种弛豫也称为自旋-自旋弛豫。