0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何最大限度地减少智能音箱和智能显示器的输入功率保护

电子设计 来源:电子设计 作者:电子设计 2022-01-20 14:34 次阅读

Other Parts Discussed in Post: TPS2595, INA185, TLV4041

智能音箱通过尖端的语音识别人工智能技术和高音质来持续提升我们的生活体验。当与其他的家庭自动化设备(如可视门铃、照明系统、恒温器和安保系统)配合使用时,智能音箱和智能显示器正迅速成为智能家居网络的控制中心

为跟上不断增长的市场需求并保持领先地位,设计人员不仅需要为智能音箱增加功能和提升性能,还需要减小其尺寸并提高散热能力。如何让半导体器件在较小的封装中实现更高性能,将对减小电路板在空间受限的应用中的尺寸至关重要。

大多数电路板上集成了直接影响用户体验的关键组件,如片上音频系统、带触觉反馈的电容式触摸的人机接口控制器,以及LED驱动器引擎和D类音频放大器。智能音箱系统中的其他组件(如电源管理)执行的任务不会直接影响用户体验,但会影响尺寸和成本。设计人员可以在减小这些组件尺寸的同时,继续提升其性能。

一个特定的组件是输入电源保护电路,如图1所示。输入保护虽然有时在许多器件中被认为是理所当然的存在,但它是智能音箱中的一大关键电路,可防止在上电或连接不可靠的电源时损坏整个系统。智能音箱由外部AC/DC壁式适配器或内部开关模式电源供电。该电路可在发生故障时保护任何下游器件免受损坏。

输入电源的主要问题是不自然的高电压或电流事件。TI具有集成和分立解决方案,可应对过流保护(OCP)和过压保护(OVP)。

eFuse器件通常可以应对OCP和OVP,它通过集成MOSFET(功率金属氧化物半导体场效应晶体管),以在这些故障事件下断开所有下游电路。eFuse器件还可在启动期间管理浪涌电流,确保系统电压以受控方式增加。TI TPS2595等器件采用2 mm×2 mm封装,可提供高达18 V/4 A的保护。

对于OCP,常见的分立实现涉及使用电流检测放大器,如INA185,其作用是测量分流电阻两端的电流。INA185的输出要么馈入模数转换器ADC)以数字化测量值,要么馈入比较器以向微控制器提供即时警报。ADC路径可精确测量系统中的电流,但由于ADC的采样频率,会增加读取测量时的延迟。比较器路径快约1000倍(同时功率消耗更少),但仅提供一个数字输出信号提示过流,而非实际的电流值。

ADC适用于需要精确测量电流的系统,且可灵活地动态更改限值。INA185具有优于±0.2%的满量程精度,是业界最小的带引线封装的电流检测放大器。该器件尺寸仅为1.6 mm×1.6 mm,非常适合需要优化电路板布局的小型化系统。

增强智能音箱和扩展基座的设计pYYBAGGKUZqAQvWtAAAJptJwKig870.png了解更多有关应用在智能音箱和扩展基座中的快速响应过流事件检测电路。

但是,在智能显示器中,系统电压高于18 V,因此需要更快的OCP警报。集成的eFuse器件可能无法在这样的系统中运行,但电流检测放大器和比较器结合使用可提供相同的功能,同时增加灵活性,并占用极小的电路板空间。TI的TLV4041等纳秒延时比较器仅消耗2μA的电源电流,可通过简易的齐纳二极管供电。INA185和TLV4041组合使用的解决方案尺寸为5 mm2,且响应时间比其他同类器件快50倍。

当系统电流超过自定义阈值时,使用带有快速比较器的INA185等放大器可提供快速、精确的OCP警报。根据系统的不同,此限值可设置为几毫安到几安培。TLV4041还集成了一个高精度(全温度范围1%)的电压参考,无论电流水平如何都能提供准确的警报,所有这些都在0.73 mm*0.73 mm的空间内。

图3所示的分立式解决方案无需额外的板载稳压器,从而节省了电路板空间,此外还同时适用于低压和高压智能音箱系统。相同的电路可适用于不同电源电压水平的不同扬声器型号,以进一步简化输入电源保护设计。

poYBAGGKUZuAMQdUAACy6nnCZXU760.png

图3:如何设置INA185和TLV4041以生成高压系统OCP警报信号的功能电路

在纳入必要的无源元件之后,INA185(2.56mm2)和TLV4041(0.533mm2)结合使用的解决方案占用了大约5mm2的电路板空间。该解决方案的总体尺寸比提供电流检测功能的同类集成器件减小了15%。此外,TLV4041的延迟仅为450ns,这使得TI的组合解决方案比集成通用比较器和电流检测放大器的解决方案快得多。

TI广泛的产品组合涵盖多种解决方案,可最大限度地降低智能音箱的输入功率保护。无论是需要集成器件的低压音箱还是可使用分立器件的高压音箱,TI都能提供小尺寸且不会影响性能的解决方案。

审核编辑:金巧

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 稳压器
    +关注

    关注

    24

    文章

    4147

    浏览量

    92887
  • 电源管理
    +关注

    关注

    115

    文章

    6089

    浏览量

    143067
  • 比较器
    +关注

    关注

    14

    文章

    1608

    浏览量

    106772
收藏 人收藏

    评论

    相关推荐

    通过优化补偿最大限度减少导通时间抖动和纹波

    电子发烧友网站提供《通过优化补偿最大限度减少导通时间抖动和纹波.pdf》资料免费下载
    发表于 08-26 11:34 0次下载
    通过优化补偿<b class='flag-5'>最大限度</b>地<b class='flag-5'>减少</b>导通时间抖动和纹波

    显示器市场迎来新增长,智能与游戏领域成亮点

    市场研究机构Omdia最新发布的显示器市场报告显示,当前显示器市场正经历着显著的变化与增长,特别是高刷新率游戏显示器智能
    的头像 发表于 07-19 17:01 655次阅读

    宝砾微升压控制PL5700 输入3.5~32V 最大电流20A DCDC芯片

    PL5700采用恒定导通时间(COT)控制拓扑结构,可提供快速的瞬态响应。 ■2A栅极驱动最大限度减少了外部MOSFET的功率损耗,同时允许使用各种标准阈值器件。此外,PL5700
    发表于 06-21 17:12

    如何最大限度地降低差分测量误差?

    今天我们来详细讲下如何最大限度地降低差分测量误差 首先,我们要清楚,把差分放大器或探头连接到信号源上一般是最大的误差来源。为保持输入匹配,两条通路应尽可能完全相同。对两个输入,任何线缆
    的头像 发表于 04-19 09:57 305次阅读
    如何<b class='flag-5'>最大限度</b>地降低差分测量误差?

    如何使用低电容探头最大限度减少探头负载

    探测电路总是会对信号产生一定的影响。探头负载会改变被探测的信号,可能导致测量问题,甚至可能导致电路执行不同的操作。减少电容负载可以帮助最大限度减少这些影响。在本应用中,您将了解低电容探头如何改进
    的头像 发表于 03-25 10:51 339次阅读
    如何使用低电容探头<b class='flag-5'>最大限度</b>地<b class='flag-5'>减少</b>探头负载

    快充对电池有伤害吗 如何最大限度减少快充对电池的影响

    快充对电池有伤害吗 如何最大限度减少快充对电池的影响 快速充电(也被称为快充)是一种可快速给手机电池充电的技术。虽然快充在我们日常生活中带来了便利,但很多人担心它是否会对手机电池的寿命产生负面影响
    的头像 发表于 02-19 10:01 1083次阅读

    用于并行采样的EVADC同步转换,如何在最大化采样率的同时最大限度减少抖动?

    在我的应用程序中,HSPDM 触发 EVADC 同时对两个通道进行采样。 我应该如何配置 EVADC 以最大限度减少采样抖动并最大限度地提高采样率? 在用户手册中,它提到 SSE=0,USC=0
    发表于 01-18 07:59

    ARB5系列智能弧光保护装置

    智能电弧光保护装置适用于中低压母线的弧光保护。要想大限度减少弧光的危害,我们需要安全、迅速地切断电弧光,这样可以在发生弧光故障的时候,
    的头像 发表于 01-12 15:26 265次阅读
    ARB5系列<b class='flag-5'>智能</b>弧光<b class='flag-5'>保护</b>装置

    Wi-SUN 可最大限度地提高太阳能跟踪的性能

    目前,随着光伏系统技术的进步,智能跟踪得以实现,可最大限度地提高太阳光能的输出。不同于固定式电池板,太阳能光伏 (PV) 跟踪能够全天将太阳能电池板朝向太阳,并在恶劣天气下保护电池板
    的头像 发表于 01-07 08:38 516次阅读
    Wi-SUN 可<b class='flag-5'>最大限度</b>地提高太阳能跟踪<b class='flag-5'>器</b>的性能

    如何最大限度减小电源设计中输出电容的数量和尺寸?

    如何最大限度减小电源设计中输出电容的数量和尺寸?
    的头像 发表于 12-15 09:47 341次阅读
    如何<b class='flag-5'>最大限度</b>减小电源设计中输出电容的数量和尺寸?

    最大限度地提高高压转换功率密度

    电子发烧友网站提供《最大限度地提高高压转换功率密度.doc》资料免费下载
    发表于 12-06 14:39 308次下载

    最大限度保持系统低噪声

    最大限度保持系统低噪声
    的头像 发表于 11-27 16:58 310次阅读
    <b class='flag-5'>最大限度</b>保持系统低噪声

    最大限度提高∑-∆ ADC驱动的性能

    电子发烧友网站提供《最大限度提高∑-∆ ADC驱动的性能.pdf》资料免费下载
    发表于 11-22 09:19 0次下载
    <b class='flag-5'>最大限度</b>提高∑-∆ ADC驱动<b class='flag-5'>器</b>的性能

    直播预告|直流快速充电系统:通过 LLC 变压驱动最大限度提高功率密度

    点击标题下「MPS芯源系统」可快速关注 直流快速充电系统: 通过 LLC 变压驱动最大限度提高功率密度 时间: 下周三(11月22日) 1000 地点:在线直播 直播介绍 电动汽车充电系统中
    的头像 发表于 11-15 12:15 390次阅读
    直播预告|直流快速充电系统:通过 LLC 变压<b class='flag-5'>器</b>驱动<b class='flag-5'>最大限度</b>提高<b class='flag-5'>功率</b>密度

    最大限度减少SIC FETs EMI和转换损失

    最大限度减少SIC FETs EMI和转换损失
    的头像 发表于 09-27 15:06 384次阅读
    <b class='flag-5'>最大限度</b>地<b class='flag-5'>减少</b>SIC FETs EMI和转换损失