该应用笔记论述了如何选择适当的变压器和无源元件,并在不牺牲高速ADC动态性能的情况下获得较宽的输入频响的增益平坦度。
2023-02-09 14:21:571134 描述 此 TI 参考设计实现了低侧和高侧宽动态范围电流感应解决方案。宽动态范围是通过独特的增益开关方法实现的。硬件中的开关增益可使响应时间加快,快于通常可通过其他方法实现的时间。此设计中利用
2018-12-14 15:48:07
(抖动)和增益相关。提高增益也会提高与之相关的噪声成分。
失真
失真由无杂散动态范围(SFDR)来衡量,SFDR指rms满量程与峰值杂散频谱成分的rms值之比。
SFDR主要
前端平衡质量的线性度
2023-12-18 06:13:51
设计说明该子系统演示了如何在可编程增益放大器 (PGA) 配置中设置 MSPM0 内部运算放大器,动态更改增益,输出放大的信号以及使用 ADC 读取结果。该配置使用户能够使用具有高增益的小输入电压
2023-04-12 15:01:32
随着数字信号处理技术和数字电路工作速度的提高,以及对于系统灵敏度等要求的不断提高,对于高速、高精度的 ADC、DAC 的指标都提出了很高的要求。比如在移动通信、图像采集等应用领域中,一方面要求
2018-04-03 10:39:35
采用高速模数转换器(ADC)的系统设计非常困难,对于输入有两类ADC架构可供选择:缓冲型和无缓冲型。
缓冲和无缓冲架构的特征
高线性度缓冲器,但需要更高的功率;
更易设计输入网络与高阻抗缓冲器接口
2023-12-18 07:42:00
来源 网络采用高速模数转换器(ADC)的系统设计非常困难,对于输入有两类ADC架构可供选择:缓冲型和无缓冲型。 缓冲和无缓冲架构的特征 缓冲架构的基本特征 * 高线性度缓冲器,但需要更高的功率
2018-01-23 16:01:44
采用高速模数转换器(ADC)的系统设计非常困难,对于输入有两类ADC架构可供选择:缓冲型和无缓冲型。 缓冲和无缓冲架构的特征缓冲架构的基本特征高线性度缓冲器,但需要更高的功率;更易设计输入网络与高
2018-09-17 15:38:24
采用高速模数转换器(ADC)的系统设计非常困难,对于输入有两类ADC架构可供选择:缓冲型和无缓冲型。缓冲和无缓冲架构的特征缓冲架构的基本特征*高线性度缓冲器,但需要更高的功率;*更易设计输入网络与高
2018-10-18 11:23:57
以MAX1124 (Maxim近期推出的250MHz、10位高IF ADC)为例,讨论不同的端接架构以及对高速ADC增益平坦度和动态范围的影响。我们首先以原边端接电路为例(图1a),阻抗为50
2021-10-23 11:10:35
。 带宽带宽是系统要使用的频率范围。 通带平坦度通带平坦度是指定带宽内的波动量;引起波动的原因可能是纹波效应,或者是巴特沃兹滤波器的慢速滚降特性。通带平坦度通常小于1 dB,对于设置整体系统增益
2018-09-17 15:48:29
。 戴维宁端接方式非常适合高速背板设计、长传输线,以及大负载的应用场合,通过两并联电阻将负载的电压级保持在最优的开关点附近,则驱动器可以用较小的功率来驱动总线。 (4)RC网络端接 RC网络端接又称交流
2018-11-27 15:22:15
处理方式,这种方法能将动态范围提高2倍,进而改善系统总体性能。虽然差分 输入型 ADC也能接受单端输入信号,但只有在输入差分信号时才能获得最佳ADC性能。ADC驱动器专门设计用于提供这种差分信号的电路
2018-10-17 10:52:42
的 4V 满度转换范围。这减少了对外部基准或电阻器的需求。差分线性度在 25℃温度下为 0.5LSB,在整个工作温度范围内的最大值0.75LSB。用差分增益1%和差分相位为0.7%可以规定动态特性范围
2021-09-06 10:13:59
的中频子系统,可数字化高达160 MHz的射频(RF)频段,并且此频段在70 MHz至450 MHz中频(IF)范围内为宽度居中。 与传统奈奎斯特IF采样ADC不同,AD6676依靠具有高过采样率的可调谐带通Σ-Δ型ADC,无需特定频段的IF SAW滤波器和增益级,极大简化宽带无线电接收机架构。
2018-10-31 10:48:38
关于ADCMP605器件的LVDS输入、输出匹配电阻的问题:对于这样的高速比较器,LVDS布局布线的要求,以及对源端和输出端电阻匹配的要求如何?可以直接按数据手册上的方式接么?
2018-08-09 07:21:06
Agilent Acqiris高速模拟信号平均器可提高oaTOFMS的质量准确度和动态范围
2019-10-29 07:39:14
你好,我有关于 ADC 的问题。
CYT2B9 数据表提到 ADC 的总误差规格如下:
1、总误差是什么意思?
总误差是否意味着量化误差、偏移误差、增益误差、INL(积分非线性度)和 DNL(微分
2024-01-22 06:21:59
在PSoC第一触控套件上测试Delsig ADC,用0*6*VREF范围,得到5%的增益误差。在其他范围内,误差较小,但仍然不符合标准。是否有可能导致ES1或硅错误的错误配置? 以上来自于百度翻译
2019-03-18 15:31:21
大多数高动态范围应用的理想选择。单位增益稳定性使OPA642特别适用于低增益差分放大器、跨阻放大器、+2视频线驱动器增益、宽带积分器和低失真ADC放大器。如果需要更高的增益甚至更低的谐波失真度,请考虑
2020-10-19 15:44:32
极性设置中,单端单极性信号被驱动至ADC的正输入端。然而,信号源地未被驱动至ADC的负输入端,此输入到达满量程电压的一半。本例中,输入范围为±VFS /2,而非0至VFS 。未出现动态范围增加,单极
2018-10-18 11:25:47
不断丰富的高速和极高速 ADC 以及数字处理产品正使过采样成为宽带和射频系统的实用架构方法。半导体技术进步为提升速度以及降低成本做出了诸多贡献(比如价格、功耗和电路板面积),让系统设计人员得以探索
2020-12-31 09:08:39
的OTA,并且利用该OTA构造一个适用于10位,100 MS/s的流水线ADC的采样保持电路。文章讨论了适宜采用的跨导运算放大器的结构以及对其性能产生影响的因素和采样保持电路的结构,最后给出了仿真结果
2018-10-08 15:47:53
问:我有一个仪表放大器,但我需要更宽的动态范围,而不是单一增益。我可以通过多路复用增益电阻来获得可编程增益吗?答:为了实现高精度传感器测量动态范围的最大化,可能需要使用可编程增益仪表放大器(PGIA
2018-10-31 10:31:19
。 原边端接 本文以MAX1124 (Maxim近期推出的250MHz、10位高IF ADC)为例,讨论不同的端接架构以及对高速ADC增益平坦度和动态范围的影响。我们首先以原边端接电路为例(图1a
2011-08-05 09:28:06
连接到由另一个电阻构成的“负载”(通常可以加以控制)。 图1显示的是示例滤波器。它与前文所述的网络一致,输出端采用与信源电阻值一样的电阻端接。图2显示的是非常良好且平坦的通带响应。图3显示的是去掉
2019-07-09 07:27:37
CTSD架构的主要优点之一是它能够在窄频带内检测信号,因此宽带NSD并不特别令人感兴趣。相反,窄通带内的动态范围将突出显示为CTSD ADC的性能指标。噪声整形传递函数将根据调制器设计中使用的环路滤波器
2018-11-01 11:33:13
如何提出一种宽范围VGA电路,通过控制和稳压模块,进一步提高增益动态范围和电路稳定性实现66 dB的增益线性宽范围调节?
2021-04-06 06:12:41
我有一个仪表放大器,但我需要更宽的动态范围,而不是单一增益。我可以通过多路复用增益电阻来获得可编程增益吗?
2021-01-08 07:22:49
模,那么该电路将能非常方便地与许多 ADC 接口,其基准电压决定满量程范围。 图 2. 具有改进动态范围的单端转差分电路 将环路内部差分放大器的增益配置为大于 1 的值,可提高电路的输出动态范围(图
2020-04-10 09:13:10
、双通道或三通道转换●您目前如何生成正交信号?●在模拟还是数字(IF采样)域中?选择ADC本身就值得讨论。ADC的动态范围可确定系统架构(反之亦然)。首先,我们要查看信号带宽和采样频率(准确的采用频率通常
2015-01-29 15:54:02
问题:我有一个仪表放大器,但我需要更宽的动态范围,而不是单一增益。我可以通过多路复用增益电阻来获得可编程增益吗?
2019-03-01 08:54:41
必须提供足以支持所需信号、干扰信号以及增加的裕量的动态范围,以支持信号衰落和AGC响应时间。那么,多大的动态范围才够呢?性能最高的软件定义无线电(和RF实验室仪器)通常采用14至16位高速ADC,从而
2018-10-10 11:27:09
目前正在做的ADC指标要求如下:动态范围:不小于106dB线性度 30ppm输入信号范围-10V~+10V;输入信号频率:0~100HZ目前是通过AD 7767(24位AD)做过一轮,但是线性度指标距离要求相差甚远,请专家指导。最好能够提供芯片参考,以及设计中要关注那些要点、注意事项!谢谢!
2018-12-19 09:34:42
结构的滤波谱,在37信道同时输入的情况下,铒离子掺杂浓度为4000 ppm 时,使1536—1608 rim 范围带宽内的增益达到了24 dB 左右,噪声指数小于5.5 dB,增益谱的不平坦度小于1
2009-08-08 09:51:57
(ENOB)、输入带宽、无杂散动态范围(SFDR)以及微分或积分非线性度等。对于GSPS ADC,最重要的一个交流性能参数可能就是SFDR。简单而言,该参数规定了ADC以及系统从其他噪声或者任何其他杂散频率中
2018-11-01 11:31:37
轨——比如温度测量(RTD或热电偶)和惠斯登电桥——时,此架构的优势。Σ-Δ型模数转换器(ADC)广泛用于传感器具有较小输出电压范围和带宽的应用中(比如应变计或热敏电阻),因为这种架构提供高动态范围
2018-10-31 10:20:33
1.AD9361的dac输入动态范围控制是多少?相应的设置REG的地址?该如何设置?2.AD9361的PA增益一般设置多大?3.RX端AGC的gain值设定是多少?4.RX端adc的动态范围设定多少?5.是否有AD9361驱动的例子供我们参考?
2018-10-11 09:19:02
关于HMC8410的问题 贵司发布了宽带低噪声放大器HMC8410,从频响上来看,高端增益偏小(输入匹配性能大幅下降)。 看起来高频段增益降低与输入匹配恶化有关,请问这个输入匹配恶化是芯片本身输入特性决定的还是外偏置电路决定的。 通过外偏置电路可将增益平坦度调整到什么样的水平。 谢谢!
2018-08-23 18:25:22
AD8369仅有45dB的动态增益调节范围,我现在想实现80dB的动态增益调节范围,是否可以通过两片AD8369级联实现?如果可以,两片AD8369级联应该如何连接?下图的连接方式是否正确?请各位多多指教
2018-09-30 14:52:21
怎样将单端信号转换成差分信号呢?变压器有哪些最优匹配方法?如何改善ADC的增益平坦度并保持它的动态性能呢?
2021-04-22 06:35:25
增益为1的AD8476级联而实现的图1. 改进的单端转差分电路然而,许多应用需要更大的输出动态范围,例如温度和压力传感器输出的信号调理等。如果还能调节共模,那么该电路将能非常方便地与许多ADC接口,其
2019-04-14 08:30:01
,狭窄通带内的动态范围将突出为CTSD ADC的性能指标。
主要亮点:
过采样提供内在的抗混叠能力,因为谐波落在CTSD带宽之外。失真产物要混叠回通带,其高频分量必须远超Fs/2。
CTSD架构使用阻性
2023-12-11 08:14:37
演示电路996具有LTC2208 16位130Msps,高速和高动态范围ADC。该演示电路仅支持LVDS操作,DC996演示电路需要高达700mA的电流,具体取决于采样速率和提供的AD转换器
2020-04-10 07:12:26
在高中频ADC应用中,如何改善增益平坦度同时又不影响动态性能:摘要:本文指导用户选择适当的变压器,用于高速模/数转换器(ADC)前端的信号调理。本文还阐述了如何合理选择无
2009-09-25 08:22:2323
在高中频ADC应用中,如何改善增益平坦度同时又不影响动态性能
本文指导
2006-05-07 13:40:17588 在高中频ADC应用中,如何改善增益平坦度同时又不影响动态性能
摘要:本文指导用户选择适当的变压器,用于高速模/数转换器(
2008-09-11 21:04:34755 副边变压器端接提升高速ADC的增益平坦度
Abstract: The following application note describes the differences between
2009-02-17 10:37:28789
具有40dB动态范围的自动增益控制电路
2009-03-20 10:56:062243
宽动态范围的增益控制放大器
2009-03-20 11:04:57595 该应用笔记论述了如何选择适当的变压器和无源元件,并在不牺牲高速ADC动态性能的情况下获得较宽的输入频响的增益平坦度。 对于较高IF的模/数转换器(ADC),正确选
2009-04-16 16:47:50398 摘要:本文指导用户选择适当的变压器,用于高速模/数转换器(ADC)前端的信号调理。本文还阐述了如何合理选择无源元件,在较宽的输入频率范围内改善增益的平坦度,而且不会牺
2009-04-25 09:27:05408 摘要:本应用笔记描述了变压器原边端接和副边端接的区别,通常用于前置高速模/数转换器(ADC)的信号调理链路。本文详细说明了在较高中频(IF)的应用中,两种端接对高速ADC增益平
2009-04-25 09:30:04412 摘要:该应用笔记论述了如何选择适当的变压器和无源元件,并在不牺牲高速ADC动态性能的情况下获得较宽的输入频响的增益平坦度。 对于较高IF的模/数转换器(ADC),
2009-04-25 09:31:04432 摘要:本文指导用户选择适当的变压器,用于高速模/数转换器(ADC)前端的信号调理。本文还阐述了如何合理选择无源元件,在较宽的输入频率范围内改善增益的平坦度,而且不会牺
2009-05-01 10:45:52501 摘要:本应用笔记描述了变压器原边端接和副边端接的区别,通常用于前置高速模/数转换器(ADC)的信号调理链路。本文详细说明了在较高中频(IF)的应用中,两种端接对高速ADC增益平
2009-05-01 10:50:25490 摘要:该应用笔记论述了如何选择适当的变压器和无源元件,并在不牺牲高速ADC动态性能的情况下获得较宽的输入频响的增益平坦度。 对于较高IF的模/数转换器(ADC),
2009-05-01 10:51:07805 摘要:本文指导用户选择适当的变压器,用于高速模/数转换器(ADC)前端的信号调理。本文还阐述了如何合理选择无源元件,在较宽的输入频率范围内改善增益的平坦度,而且不会牺
2009-05-07 11:10:01349 摘要:本应用笔记描述了变压器原边端接和副边端接的区别,通常用于前置高速模/数转换器(ADC)的信号调理链路。本文详细说明了在较高中频(IF)的应用中,两种端接对高速ADC增益平
2009-05-08 10:30:36612 摘要:该应用笔记论述了如何选择适当的变压器和无源元件,并在不牺牲高速ADC动态性能的情况下获得较宽的输入频响的增益平坦度。 对于较高IF的模/数转换器(ADC),
2009-05-08 10:31:16566 频间硬切换实现的机制,以及对RNC性能的影响频间硬切换包括异频同覆盖小区之间的异频小区负载平衡所引起的频间硬切换和异频相邻小区由于覆盖范围和UE的
2009-06-30 09:45:19943 高速ADC,什么是高速ADC
背景知识:
随着计算机技术、通信技术和微电子技术的高速发展,大大促进了ADC技术的发展,ADC作为模拟量与数据量接
2010-03-24 13:28:019741 设置高速ADC的共模输入电压范围(中文)
对于包含基带采样、高速ADC的通信接收机,输入共模电压范围(VCM)非常重要。特别是对于单电源供
2010-03-30 17:59:393883 无杂散动态范围(SFDR)
SFDR(无杂散动态范围)衡量的只是相对于转换器满量程范围(dBFS)或输入信号电平(dBc)的最差频谱伪像。比较ADC时
2011-01-01 12:14:5612668 随着软件无线电技术和FPGA、DSP、AD 等技术的高速发展,数字接收机的应用日益广泛。为了扩大数字接收机的ADC 动态范围,广泛采用了自动增益控制(AGC) ,使接收机的增益随着信号的强弱
2011-10-11 18:30:033229 针对数字预失真系统对反馈链路平坦度的要求,提出一种在不断开模拟链路的前提下,采用单音测量WCDMALTE混模基站射频拉远单元反馈链路的增益平坦度,并采用最小二乘法,分别拟合
2012-10-24 15:04:0741 为了实现令人惊异的动态范围,您需要确保最大的信号利用了该ADC的整个满标度范围。换句话说,您需要运用所有代码。怎样才能做到这一点呢?
2012-11-28 15:08:223503 该电路利用高分辨率模数转换器(ADC)的内部可编程增益放大器(PGA)来提 供必要的调理和电平转换并实现动态范围。
2013-01-11 15:15:314333 采用高输入频率、高速模数转换器(ADC)的系统设计是一项具挑战性的任务。ADC输入接口设计有6个主要条件:输入阻抗、输入驱动、带宽、通带平坦度、噪声和失真。
2013-08-22 16:13:1824 过采样ADC与PGA结合,提供127 dB动态范围
2016-01-07 14:59:220 可编程增益跨阻放大器使光谱系统的动态范围达到最大
2016-01-07 15:11:480 在为高性能系统选择宽带模数转换器(ADC)时,需要考虑多种模拟输入参数,比如,ADC分辨率、采样速率、信噪比(SNR)、有效位数(ENOB)、输入带宽、无杂散动态范围(SFDR)以及微分或积分非线性度等。 对于GSPS ADC,最重要的一个交流性能参数可能就是SFDR。
2018-07-10 01:52:008762 本文讨论了高频应用要取得最好性能所需的变频器特性,包括平坦的频率响应、高输入带宽、低输入满刻度电压范围以及针对多阵列系统调整参数的能力。文章还讨论了与选择高分辨率高速ADC有关的系统设计考虑因素。
2017-09-15 16:07:5526 可编程增益跨阻放大器 使光谱系统的动态范围 达到最大
2017-09-18 08:48:335 EDFA 中加入啁啾光栅增益平坦滤波器,其增益平坦度可控制在0.3dB 以内。 EDFA 具有增益高、带宽大、噪声低、增益特性对光偏振状态不敏感、对数据速率以及格式透明和在多路系统中信道交叉串扰可忽略等优点[1],在 DWDM 系统中,由于各信道波长的密集复用以及
2017-11-07 10:17:5214 本文介绍如何确定接收器增益,以及接收器增益设置太高时对接收SNR的负面影响。文章也讨论如何正确优化数字波束成形器、滤波器、检波器的动态范围以及压缩信号映射。实现上述优化后,系统将最大程度地发挥高SNR接收器的优势,大幅提高诊断性能。
2019-05-28 09:20:128676 固定增益差分放大器简化对高速 ADC 的驱动
2021-03-21 03:06:0010 DN526 - 用于 14 位、4.5Msps ADC 的驱动器工作在宽增益范围
2021-03-21 16:25:237 ADL5202: 宽动态范围、高速、数字控制VGA
2021-03-22 08:37:265 +36dBm IIP3混频器以2.4dB增益提升动态范围
2021-04-19 10:13:051 ADL5202:宽动态范围、高速、数控VGA数据表
2021-05-25 15:48:354 图1所示电路是一个灵活的信号调理模块,具有低噪声、相对较高的增益以及在不影响性能的前提下根据输入电平变化动态改变增益的能力,同时仍维持宽动态范围。现有Σ-Δ技术可以提供许多应用所需的动态范围,但代价
2021-06-05 09:16:102 宽带、高动态范围微波限幅放大器是电子战(EW)系统中的关键组件,在这种系统中,需要在宽输入功率范围内提供稳定/压缩的输出功率。这些电子战系统通常需要高增益和平坦的响应,并且必须在恶劣的热环境中工作。
2023-01-06 13:59:03712 正确选择电路板元件是满足高中频模数转换器(ADC)苛刻的高动态性能和增益平坦度要求的重要因素。以下技术说明将提供有关输入网络的适当选择,这些输入网络旨在借助宽带变压器、端接电阻器和滤波电容器轻松进行单端到差分输入信号转换。
2023-01-10 11:29:26734 以下应用笔记描述了高速模数转换器(ADC)之前信号调理电路中常用的变压器的初级侧和次级端接之间的差异。本文详细介绍了这两种端接方案对专为高中频应用设计的ADC的增益平坦度和动态性能的影响。
2023-01-13 14:49:03538 工业、仪器仪表和医疗设备中使用的高性能数据采集信号链需要宽动态范围和高精度。通过增加一个可编程增益放大器或并行操作多个ADC,使用数字后处理来平均结果,可以增加ADC的动态范围,但由于功耗、空间
2023-02-17 10:39:32615 和失真(SINAD)、总谐波失真(THD)和无杂散动态范围(SFDR)。在本系列文章的第二部分中(有关进一步阅读,请参见“高速ADC的动态测试”),这些参数定义通过在实际测试场景中测量来进行测试。
2023-02-25 09:20:371085 模数转换器 (ADC) 代表接收器、测试设备和其他电子设备中模拟和数字世界之间的链接。如本系列文章第1部分所述,许多关键动态参数提供了给定ADC预期动态性能的精确相关性。本系列文章的第 2 部分介绍了用于测试高速 ADC 动态规格的一些设置配置、设备建议和测量程序。
2023-02-25 09:26:431754 本文指导用户如何选择合适的变压器,通常用于高速模数转换器(ADC)之前的信号调理电路。本文还介绍了如何选择无源元件,以便在很宽的输入频率范围内实现增益平坦度,同时又不牺牲这些ADC的动态性能。最后
2023-02-27 14:33:34583 对于用在图像或视频的ADC来说,动态范围也是至关重要的,但位深倒不是他们关注的主要参数。
2023-03-14 10:38:15494 同时也面临一些挑战。其中最有意义的是如何提高高速ADC的SFDR,这可以提高信号的精度和准确性。 SFDR即“串扰自由动态范围”,代表着ADC在高频输入信号下输出第一个谐波之后的最高谐波信号跟原信号的分离度。在实际应用中,信号动态范围比串扰自由动
2023-10-31 09:41:15270
评论
查看更多