LTC3112 是一款固定频率、同步降压-升压型 DC/DC 转换器,具有一个扩展的输入和输出范围。独特的四开关、单电感器架构提供了低噪声,并可在输入电压高于、低于或等于输出电压的情况下实现无缝运作。 LTC3112 具有一个 2.7V 至 15V 的输入范围,很适合于多种单节或多节电池、后备电容器或墙上适配器电源应用。低 RDS(ON) 内部 N 沟道 MOSFET 开关在具有较高负载电流要求的应用中实现了高效运作。
采用超级电容器的后备电源可在低至 VIN = 2V 和 250mA 负载的条件下运行
相关推荐
3.3V的2节串联超级电容器充电器
LTC3226EUD 3.3V备用电源的典型应用电路。 LTC3226是一款2节串联超级电容器充电器,带有备用PowerPath控制器。它包括一个带可编程输出电压的电荷泵超级电容充电器,一个低压差稳压器和一个用于在正常模式和备用模式之间切换的电源失效比较器
2020-08-20 14:16:59
90VAC 至 270VAC 输入、+/-12V/3W 准谐振反激式 (12V (250mA))
`描述此参考设计采用 UCC28600 准谐振反激式控制器,可从通用交流输入生成隔离型 +12V/250mA 和 -12V/10mA 输出。UCC28600 的电能存储功能可最大程度地减少空载和全负荷条件下的功率损耗。此设计布局在 36mm X 46mm 的印刷电路板上。`
2015-04-22 15:06:22
超级电容性能原理及模组应用
还在包括税控机、数码相机、掌上电脑等微小电流供电的后备电源等消费性电子产品及众多领域有着巨大的应用价值和发展潜力,被世界各国广泛关注,行业前景可期。一、超级电容器在运输业的应用首先是纯电动汽车领域
2016-08-08 10:47:05
超级电容的典型应用
,使体积增大,这并不是好的解决方案。将超级电容器与蓄电池并联可以很好地解决这个问题。2.电性能的改善 采用超级电容器与蓄电池并联时启动过程的电压波形相比启动瞬间电压跌落由仅采用蓄电池时的3.2V提升到
2013-03-22 16:05:07
超级电容器
和二次电池之间的新型储能装置。超级电容器集高能量密度、高功率密度、长寿命等特性于一身,具有工作温度宽、可靠性高、可快速循环充放电和长时间放电等特点[1],广泛用作微机的备用电源、太阳能充电器、报警装置、家用电器、照相机闪光灯和飞机的点火装置等,尤其是在电动汽车领域中的开发应用已引起举世的广泛重视[2]
2021-04-01 08:35:55
超级电容器2
的方法,本文主要分析恒流充电条件下的超级电容器特性。恒流限压充电的方法为控制最高电压为Umax,恒流充电结束后转入恒压浮充,直到超级电容器充满。采用这种充电方法的优点是:第一阶段采用较大电流以节省充电时间
2021-04-01 08:38:14
超级电容器“超级”在哪?
环保电源;6)充电、放电电路简单,无需充电电池那样的充电电路,安全系数高,长期使用免维护; 7)超低温特性好,温度范围宽-40℃~+85℃; 以上几点能够体现出超级电容器的“超级”优势,超级电容器的主要
2020-04-22 09:23:12
超级电容器“超级”在哪?
环保电源;6)充电、放电电路简单,无需充电电池那样的充电电路,安全系数高,长期使用免维护; 7)超低温特性好,温度范围宽-40℃~+85℃; 以上几点能够体现出超级电容器的“超级”优势,超级电容器的主要
2021-10-30 15:17:25
超级电容器储能技术及其应用
100V,不能直接用于电力系统。可以采用两种方式提高电压等级:将超级电容器直接串联提高电压等级;文献[10]将超级电容器模块连接BoostDC/DC变换器,然后经过逆变器与电网连接,为了实现更高的电压
2021-10-30 15:15:43
超级电容器储能技术应用
超级电容器作为大功率物理二次电源,在国民经济各领域用途十分广泛。各发达国家都把超级电容器的研究列为国家重点战略研究项目。1996年欧洲共同体制定了超级电容器的发展计划,日本“新阳光计划”中列出了超级
2021-04-25 11:27:12
超级电容器充电
用5v/500mA电源给超级电容器充电,超级电容器要怎么选择?我在这方面完全小白,之前没接触过超级电容器的充电。目的就是做一个超级电容的充放电测试,我是想直接对超级电容充电,就是充电电路越简单越好,选择对5.5V 0.1F的超级电容充电需要注意什么?希望有懂的人能给我解答一下,谢谢啦~
2017-06-03 14:41:15
超级电容器充电的能源采集器技术基础知识
需的辅助过压保护电路也会消耗静态电流,其可在低光照期间影响系统效率。二极管充电器的主要优势在于其为彻底放电状态的超级电容器充电所需的时间。图2是120mF超级电容器如何采用支持ISC=1mA短路电流
2018-11-30 16:54:21
超级电容器原理及优点
于双电层和电极内部,其原理如图1所示。当用直流电源为超级电容器单体充电时,电解质中的正、负离子聚集到固体电极表面,形成“电极/溶液”双电层,用以贮存电荷。双电层厚度的形成,依赖于电解质的浓度和离子
2021-04-01 08:40:54
超级电容器可以比电池更快的充电和提供能量
2:超级电容器和电池的充电/放电循环 超级电容器的最新发展已经引入可充电至较高电压(高达4V)的锂离子混合电容器,该电容器自放电较少,因此具有较高的能量密度。这些超级电容器的缺点是不能放电到低于约
2019-07-17 04:45:05
超级电容器在车载无线充中的应用
没有电源供电已停止工作,无法自动感应而无法取下手机,只能采取人工破坏性的掰开固定支架,此方式既破坏支架又费时费力。故车载无线充内部增加超级电容器后,电容器作为后备电源为模块提供电量,当汽车熄火后
2021-09-16 10:57:51
超级电容器在集中器中的应用
也是影响整体寿命的直接原因。超级电容器凭借着自身的可靠性在储能元器件中非常突出,集中器应用主要针对于国网,国网标准要求集抄时,掉电后要有1分钟的运行时间,功耗一般在200mA左右,典型工作电压是5V
2021-08-31 15:00:29
超级电容器在集中器中的应用
影响整体寿命的直接原因。
超级电容器凭借着自身的可靠性在储能元器件中非常突出,集中器应用主要针对于国网,国网标准要求集抄时,掉电后要有1分钟的运行时间,功耗一般在200mA左右,典型工作电压是5V,掉电
2024-01-15 16:51:07
超级电容器循环寿命分析
电容器容量在3000次循环时电容容量达到最大值,整个循环过程中容量变化不大。结合超级电容器的内部构成分析:刚开始进行充放循环时,电极表面最外层的活性物质与电解液接触较好,得以充分利用,而内腔中部
2021-04-01 08:47:11
超级电容器恒流充电特性分析
,等效电路为一般的RC电路[6]。超级电容器的等效模型如图2所示。其中,EPR为等效并联内阻,ESR为等效串联内阻,C为等效容抗,L为电容感抗。EPR主要影响超级电容器的漏电流,从而影响电容的长期储能性能,EPR通常很大,可以达到几万欧姆,所以漏电流很小。L代表电容器的感性成分,它是与工作频率有关的分量。
2021-04-01 08:42:29
超级电容器放电时要完全耗尽其电能
½ CV2。例如,通过您的输入电源将1F超级电容器充电至5V,让其只放电到2.5V时从该电容器中汲取的电能大约是9.4J。但如果刚才提到的超级电容器因给系统供电使自己的电压降至0.7V,那么从该电容器中汲取
2018-09-05 15:53:48
超级电容器比电池更好吗?
超级电容器是一种新型的储能器件,主要用于断电后提供短期能量的后备电源,其能量密度介于普通电容和二次电池之间,同时具有高比容量和比功率的特点。那超级电容器比电池更好吗?让我们来从以下几点看看超级电容器
2024-01-06 16:33:00
超级电容器比电池更好吗?
超级电容器是一种新型的储能器件,主要用于断电后提供短期能量的后备电源,其能量密度介于普通电容和二次电池之间,同时具有高比容量和比功率的特点。那超级电容器比电池更好吗?让我们来从以下几点看看超级电容器
2024-02-18 15:38:37
超级电容器比电池更好?
`◆ 超级电容器不同于电池,在某些应用领域,它可能优于电池。有时将两者结合起来,将电容器的功率特性和电池的高能量存储结合起来,不失为一种更好的途径。◆ 超级电容器在其额定电压范围内可以被充电至任意
2013-03-22 16:19:05
超级电容器的原理及应用
超负荷电路运行的需要,国内开始推广使用超级电容器,这种器件在性能上比传统电容器更加优越。超级电容器实际上属于电化学元件,引起电荷或电能储存流程可相互逆转,其循环充电的次数达到50万次。凭借多个方面的性能
2021-07-21 15:56:08
超级电容器的原理及应用
超负荷电路运行的需要,国内开始推广使用超级电容器,这种器件在性能上比传统电容器更加优越。超级电容器实际上属于电化学元件,引起电荷或电能储存流程可相互逆转,其循环充电的次数达到50万次。凭借多个方面的性能
2022-04-29 15:04:21
超级电容器的备用电源解决方案
/放电曲线。 图 2:超级电容器和电池的充电/放电循环 超级电容器的最新发展已经引入可充电至较高电压(高达4V)的锂离子混合电容器,该电容器自放电较少,因此具有较高的能量密度。这些超级电容器的缺点
2018-10-15 16:37:00
超级电容器的构造及其工作原理介绍
电容器通常具有非常低的额定电压,范围从 1V 到 3V。以下等式给出了超级电容器存储的电能: P = V 2 /4R 其中, P 是超级电容器存储的功率, V 是施加电压(或额定电压), R
2023-03-29 16:12:02
超级电容器的类型
的电极,另外也有Econd公司产品为典型代表的多层叠片串联组合而成的高压超级电容器,可以达到300V以上的工作电压。 2.绕卷型溶剂电容器,采用电极材料涂覆在集流体上,经过绕制得到,这类电容器通常具有
2021-10-30 15:09:22
超级电容器的类型
的电极,另外也有Econd公司产品为典型代表的多层叠片串联组合而成的高压超级电容器,可以达到300V以上的工作电压。 2.绕卷型溶剂电容器,采用电极材料涂覆在集流体上,经过绕制得到,这类电容器通常具有
2013-03-22 16:06:11
超级电容器的结构和技术特性
,北京合众汇能公司生产的HCC250F/2.7V的超级电容器和北京集星科技公司生产的系列电容的循环寿命均在50万次以上; (3)能量转换效率高。大电流能量循环效率》90%; (4)功率密度高。可达
2020-12-17 16:42:12
超级电容器的鉴别 方法
称之为 “ 电容器”,就应该是物理过程存储电荷, 而不是依靠电化学过程存储电荷。在这个基本概念下,纯双电层原理的超级电容器是真正的 电容器;电化学电容器是否可以称为电容器则需要分析。电化学超级电容器应分
2011-10-13 10:29:13
超级电容器简介
时,它将表现出小电阻特性,如果没有限制,它会拽取可能的源电流。因此,必须采用恒流或恒压充电器。10年前,超级电容器每年只能卖出去很少的数量,而且价格很贵,大约1~2美元/法拉,现在,超级电容器已经作为标准
2022-04-09 16:27:59
超级电容器能作为主电源吗?
超级电容器在市场上最多的作用是作为备用电源来使用,还有很多人想用超级电容器替代电池作为主电源来使用,但因超级电容器的能量密度要比电池要低,在同体积下发挥和电池一样的续航能力超级电容器的体积和价格要比
2020-04-29 13:38:55
超级电容器能完全取代锂电池吗?
区间换算,至少需要2颗2.7V 470F的电容器单体串联使用(暂不考虑内阻等压降因素)。因为超级电容器的单体电压目前最高只能做到3.0V,故需要2颗串联使用,2.7V 470F的体积大约是φ35
2022-04-09 16:25:16
采用 SEPIC 拓扑的快速电容器充电器PMP30162技术资料下载
描述SEPIC 转换器用于向负载电容器快速充电,电压最高 160V/180V(可选)。输入电压范围为 47V +/-10%,恒定输出充电电流为 900mA。由于电容器需要从 0 伏开始(短路)充电
2018-07-13 03:50:58
采用SEPIC拓扑的快速电容器充电器参考设计
描述SEPIC 转换器用于向负载电容器快速充电,电压最高 160V/180V(可选)。输入电压范围为 47V +/-10%,恒定输出充电电流为 900mA。由于电容器需要从 0 伏开始(短路)充电
2022-09-16 07:39:17
AP8370输入2.7-5.0V输出5.0V_升压恒压驱动芯片
AP8370是一种低噪声、恒定频率(1.2MHz)的开关电容倍压器。它产生一个从2.7V到4.5V的高达250mA的输出电流调节输出电压。低外部部件计数(一个飞行电容器和两个小旁路电容在VIN
2020-01-03 08:46:17
AP8372输入2.7-5.0V 输出5.0V_升压恒压驱动芯片
AP8372是一款低噪声,恒定频率(1.2MHz)开关电容倍压器。它可在2.7V至4.5V输入范围内产生稳定的输出电压,输出电流高达250mA。低外部元件数量(一个快速电容和两个小旁路电容在VIN
2019-05-31 09:04:17
AP8372输入2.7-5.0V 输出5.0V_升压恒压驱动芯片
AP8372是一款低噪声,恒定频率(1.2MHz)开关电容倍压器。它可在2.7V至4.5V输入范围内产生稳定的输出电压,输出电流高达250mA。低外部元件数量(一个快速电容和两个小旁路电容在VIN
2019-12-16 08:45:56
AP8372输入2.7-5.0V 输出5.0V_升压恒压驱动芯片
AP8372是一款低噪声,恒定频率(1.2MHz)开关电容倍压器。它可在2.7V至4.5V输入范围内产生稳定的输出电压,输出电流高达250mA。低外部元件数量(一个快速电容和两个小旁路电容在VIN
2019-12-30 08:58:25
AVX聚合物固体电解电容器
AVX针对一般和特定市场要求,提供各种各样导电聚合物固体电解电容器。高电容、小巧、扁平、低ESR、稳定时域性能、推荐使用条件下的良性失效模式等典型特性使之成为智能手机、平板电脑、PC、电信
2020-06-30 10:29:43
LTC3121EDE双超级电容器备用电源的应用电路
LTC3121EDE 0.5V至5V双超级电容器备用电源的典型应用电路。 LTC3121是一款同步升压型DC / DC转换器,具有真正的输出断接和浪涌电流限制功能。 1.5A电流限制以及将输出电压
2020-05-21 14:15:24
LTC3245自动择取转换器质量稳定
ECU / CAN 收发器电源 ·工业内务处理电源 ·低功率 12V 至 5V 转换 简述: LTC3245 是一款开关电容器降压-升压型 DC/DC 转换器,其可采用 2.7V 至 38V
2018-09-26 15:50:49
LTC3350EUHF 11V至20V 16A超级电容器充电器的典型应用电路
LTC3350EUHF 11V至20V,16A超级电容器充电器的典型应用电路,具有6.4A输入电流限制和10V,60W备用模式。 LTC3350是一款备用电源控制器,可对一至四个超级电容器的串联电池
2019-04-28 10:34:18
TI推出业界最小的12V、750mA DC/DC电源稳压器
、输入欠压保护、内部自举电容器及热关闭等功能。 除此之外,LMR22007还支持低电流模式,可在轻负载条件下保持高效率。并且在支持额外可调输入电流限制情况下提供高达750mA的持续负载电流,通过防止
2018-09-27 15:16:02
UPS用超级电容器
,非常低,所以,在UPS应用中超级电容器是非常理想的。上述特点使它们非常适用于在线UPS系统。 在最简单的情况下,超级电容器通过2.5V直流恒压电池充电,并不要求充电电压平稳光滑。通常不需要充电电流
2013-03-22 16:16:01
[分享]超级电容器在太阳能光伏产品上的应用
控制每秒闪烁放电持续时间为0.05 秒,对超级电容器充电电流100mA,LED 放电电流为15mA. 下面以2.5V50F 在太阳能交通指示灯上的应用为例,超级电容器充电时间计算如下:C×dv=I×t
2008-12-25 16:25:45
为什么电容器组中需要与电容并联的电阻?
电源电容器组可以在断开输入电压的短时间(假设50ms)内进行补偿。此设置中的电容器(输入和电源输出之间)是否先开始充电,然后保持充电状态直到输入电源断开呢?之后,电容器会在输出负载处释放能量。如果输出负载是放电电容器,为什么需要与电容器组并联的电阻?
2018-09-27 15:21:25
为什么运行中的电力补偿电容器会出现过电流?又应如何处理?
为了保证无功补偿的正常运行,是不建议补偿电容器在过电流的条件下运行,电容器的实际运行电流也不允许超过1.3倍额定电流。 那现在问题来了,为什么运行中的电力补偿电容器会出现过电流?又应如何处
2023-03-09 17:09:37
什么是超级电容器?超级电容器原理是什么?
1 .超级电容器结构 图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨
2011-11-17 14:38:45
关于使用超级电容器替代电池作为备用电源讨论分析
,因为每个超级电容器的最大额定电压限制为 3V成本比电池高低温下的等效串联电阻 (ESR) 比室温下的 ESR 高 3-4 倍目前的技术在高温操作方面并不普遍(在高温下寿命会缩短)基于所有这些,超级
2022-03-14 15:22:31
升压、单路输出、DC-DC转换器,1V至3.3V输入、13.5V/6MA输出
。MAX1606采用独特的控制方案,可在各种负载条件下提供高效率。内部0.5A MOSFET减少了外部元件数量,高开关频率(高达500kHz)允许使用微小的表面贴装元件。电流限制可设置为500mA
2018-06-25 13:51:11
升压、单路输出、DC-DC转换器,1V至3.3V输入、13.5V/6MA输出
。MAX1606采用独特的控制方案,可在各种负载条件下提供高效率。内部0.5A MOSFET减少了外部元件数量,高开关频率(高达500kHz)允许使用纤巧的表面贴装元件。电流限制可设置为500mA
2018-07-05 15:09:29
基于超级电容器的电源后备系统可在掉电时保护手持式设备中的易失性数据
电容器的大小。每个超级电容器均选择为一个由 Nesscap 公司提供的3F/2.7V电容器(ESHSR-0003C0-002R7)。图 2 示出了在具有一个 50mA 负载时系统的实际后备时间。由于在
2018-10-23 14:33:28
基于低成本电解电容器和双向后备电源的备份电源简化
在嵌入式系统需要可靠供电的电信、工业和汽车应用中,数据丢失是一个关切的问题。供电的突然中断会在硬盘和闪存器执行读写操作时损坏数据。我们常常使用电池、电容器和超级电容器来存储足够的能量,以在供电中断期间为关键的负载提供短期电源支持。那么,有没有一种更简单的方法让我们来完成这些事儿呢?
2019-07-18 07:12:17
基于电解电容器的数据备份电源解决方案
将负载上的标称电压 (VSYS) 保持在 3V 至 17V 的范围内。 后备存储电源轨相对高的电压增加了该解决方案的储能 (E = CV2/2),并使得可把电解电容器用作一种后备存储组件。电解电容器
2018-10-10 15:26:20
基于电解电容器的数据备份电源解决方案适用于依靠 5V 至 36V 输入进行稳压的 12V 系统
的标称电压 (VSYS) 保持在 3V 至 17V 的范围内。后备存储电源轨相对高的电压增加了该解决方案的储能 (E = CV2/2),并使得可把电解电容器用作一种后备存储组件。电解电容器便宜且广泛地
2019-04-16 17:53:34
如何计算所需超级电容器的容量?
C:需要计算的超级电容器的容量U1:负载工作的起始电压U2:负载工作的截止电压举例说明:超级电容器作为某模块的备用电源使用,当主电源断电时,负载工作的功率为2W,负载工作的电压区间为2.7V-1.8V
2020-05-21 09:05:59
如何选择超级电容器
`` 本帖最后由 eehome 于 2013-1-5 09:46 编辑
如何选择超级电容器 超级电容器的两个主要应用:高功率脉冲应用和瞬时功率保持。高功率脉冲应用的特征:瞬时流向负载大电流
2012-12-27 11:22:58
新人求助:12V蓄电池输入,3.3V输出,负载电流max=250mA,找个成本低、纹波小的电源方案?
用着2596-3.3,纹波太大,要加滤波,不然负载不能正常工作可是2596还再加一级滤波,成本有点点高了综上:12V蓄电池(10V-15V)输入,3.3V输出,负载电流max=250mA想找个成本低,输出纹波小的电源方案
2016-09-29 20:11:20
智能三表、后备电源用超级电容器
的储能特性,并且重复使用寿命长,放电时利用移动导体间的电子(而不依靠化学反应)释放电流,从而为设备提供电源。超级电容器在智能水表中设计电路优点如下:a. 将电池从水表中分离出来,从而可以不考虑电池寿命
2013-07-25 18:54:40
智能三表、后备电源用超级电容器
移动导体间的电子(而不依靠化学反应)释放电流,从而为设备提供电源。超级电容器在智能水表中设计电路优点如下:a. 将电池从水表中分离出来,从而可以不考虑电池寿命对水表的影响,延长了水表的使用时间。b.
2013-06-09 16:39:50
能源采集器为超级电容器充电的技术方案
需的辅助过压保护电路也会消耗静态电流,其可在低光照期间影响系统效率。二极管充电器的主要优势在于其为彻底放电状态的超级电容器充电所需的时间。图2是120mF超级电容器如何采用支持ISC=1mA短路电流
2018-11-30 16:43:34
能量收集系统的超级电容器的选择
V 100 Fhv1860-2r7107-r更像一个小圆柱电池与硬币电池。这部分采用超12米ΩESR。更高的电压超级电容器我们已经讨论了到目前为止所有目标嵌入式系统处理器和逻辑电压。然而,还有另一个
2016-03-08 11:52:11
薄膜电容 用薄膜电容器替代铝电解电容器的分析
比率30.7%,或者采用250μF/700V 2个并联,替换比率25.6%。满功率条件下运行的测试结果列于表2。表2 EACO薄膜电容器替代铝电解电容器测试结果 从表2的结果可以看到,采用低电容量替换
2013-07-18 17:14:31
详解超级电容器特性
放电条件下放电到端电压为零所需的时间与电流的乘积再除以额定电压值,即:由于等效串联电阻(ESR)比普通电容器大,因而充放电时ESR产生的电压降不可忽略,如2.7V/5 000F超级电容器的ESR为
2011-11-17 14:45:26
输出电容器C5的选型
起点进行计算。C5的阻抗Z可通过下列公式计算。假设ΔVpp=100mV,则: 求出的Z为该电路的最小开关频率60kHz时的值。一般的开关电源用电解电容器(低阻抗产品)的阻抗规定条件为100kHz。在
2018-11-27 16:52:17
输出电容器的ESR对负载减少时的输出变动影响大
电容器电流。特别是Vesr,由于按ESR×电容器电流发生,ESR较大时输出变动变大是必然的。-还没有提及ESL,没有关系吗?我认为在该例的条件下,不需要特别考虑,但当负载电流的减少更急剧时,会出现ESL
2018-12-03 14:39:42
输出电容器的ESR对负载减少时的输出变动有什么影响
电容器电流。特别是Vesr,由于按ESR×电容器电流发生,ESR较大时输出变动变大是必然的。-还没有提及ESL,没有关系吗?我认为在该例的条件下,不需要特别考虑,但当负载电流的减少更急剧时,会出现ESL
2019-06-24 03:16:02
通用高压降压型开关电容器转换器的设计与实现
到输出电容器。在无负载情况下,电荷将在每个周期中传送到输出电容器,直至输出充电至 2 * VIN 为止,从而产生等于两倍输入电压。当存在输出负载时,输出电容器 (图中的 COUT) 在第一个相位上提供
2018-10-18 16:15:23
高效率的降压-升压型超级电容器充电器LTC3128
电容器失配的情况下实现平衡的操作和充电。而其拥有可编程的最大电容器电压限值也能够实现在电容器老化并产生不匹配的容量时确保可靠运作。 另外,LTC3128的VIN范围为1.72V至5.5V,VOUT范围为1.8V至5.5V,充电时可从VOUT 吸收
2018-09-27 15:15:43
一种长寿高效Boost超级电容掉电保持后备电源
本文设计了一种掉电后备电源,采用超级电容作为储能元件可长期浮充,大电流放电,提高了使用寿命;采用升压型拓扑,优化了超级电容容量配置,可在5V@5A 条件下,持续工作10s
2009-06-19 08:53:2239
超级电容器改善电源动态特性
本文分析了现有电源存在的问题,提出了一种基于超级电容器的解决方案。介绍了bestcap®超级电容器的特性,通过实验比较了仅采用电池和电池与超级电容器组合后的电压电流波
2009-10-16 14:05:1345
超级电容器模块
装置的缺陷。超级电容模块的工作温度范围在-40℃~ 65℃之间,解决了室外寒冷条件下铅酸电池效率大大降低的问题。此外,该超级电容模块不仅具有超级电容的所有特性,而且
2023-02-23 16:20:49
超级电容器原理及电特性
叙述了超级电容器的基本结构和工作原理,比较全面地介绍了超级电容器的特点和在特定测试条件下的电特性,分析了如较大的ESR、发热等特殊电特性产生的原因,提出一些注意
2010-05-09 23:58:33118
超级电容器
什么是超级电容器? ◆ 超级电容器(supercapacitor,ultracapacitor),又叫双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容
2007-10-31 13:01:011854
基于超级电容器的电梯后备电源系统设计
对基于超级电容器的电梯后备电源设计进行了研究,建立了试验装置。试验结果表明,该系统构建成本低,运行安全可靠,无环境污染。 超级电容器 具有优良的电气性能,利用其电能储存特性
2011-07-26 15:48:40355
怎样分辨超级电容器?超级电容器和电池的区别?什么是超级电容器?
超级电容器(Supercapacitors,ultracapacitor),又名电化学电容器(Electrochemical Capacitors),双电层电容器(Electrical Double-Layer Capacitor)、黄金电容、法拉电容,
2017-04-26 09:58:3420237
基于超级电容器的后备电源
在该应用中,于正常操作期间将两个串联超级电容器充电至 5V,以在主电源出现故障时提供所需的后备电源。只要主电源接入,LTC3536 就将处于静态电流非常低的突发模式 (Burst Mode) 操作
2018-06-29 18:41:51322
采用一个高电压电容器组的 3.3V 后备电源可在低至 VIN = 2V 和 500mA 负载条件下运行
运作。LTC3111 具有一个 2.5V 至 15V 的输入和输出范围,很适合于多种单节或多节电池、后备电容器或墙上适配器电源应用。低 RDS(ON) 内部 N 沟道 MOSFET 开关和可选的 PWM 或突发模式操作可在众多的工作条件下实现高效率。
2018-06-29 18:52:38190
LTC3549 Project - 250mA Low Vin Buck Regulator (1.6-5.5V to 1.4V @ 250mA)
LTC3549 Project - 250mA Low Vin Buck Regulator (1.6-5.5V to 1.4V @ 250mA)
2021-02-22 13:31:262
DN498 - 基于超级电容器的电源后备系统可在掉电时保护手持式设备中的易失性数据
DN498 - 基于超级电容器的电源后备系统可在掉电时保护手持式设备中的易失性数据
2021-03-19 11:19:462
采用超级电容器的智能电表电源方案
备用电源对电子式电表断电时保持运行至关重要,此设计采用超级电容器作为储能元件,可在主电源与备用操作之间无缝转换,用于电源中断期间自动为电表提供备用电压。
2022-03-09 11:59:541588
采用超级电容器的低功耗后备供电
方案介绍采用超级电容器的供电系统输入电压范围宽,为 3V 到 40V,输出为 2.5A。 可采用超级电容器来取代传统电池(存在电解液泄漏等缺陷)作为后备电源。 在升压模式下,ISL85403 升降
2022-12-28 16:16:294
无电池备用电源系统使用超级电容器来防止RAID系统中的数据丢失
在基于超级电容器的备用电源系统中,必须对串联的电容器组充电并平衡电池电压。超级电容器在需要时入电源路径,负载的功率由DC/DC转换器控制。图 1 示出了一款基于超级电容器的备用电源系统,该系统采用
2023-04-13 10:41:381226
超级电容器与传统电容器的区别 影响超级电容器性能的因素
超级电容器与传统电容器的区别 影响超级电容器性能的因素 在现代电子技术和能量储存领域,超级电容器(也称为超级电容)作为一种重要的储能装置备受关注。相较于传统电容器,超级电容器具有许多独特的特征和性能
2024-02-02 10:28:11236
评论
查看更多