本文介绍了一种新颖的测量电路,以测量用于测量SiC MOSFET的实时或实际结温。可以看出,出于订购和处理数据或电流传感器的目的,不需要本质上复杂的任何算法。
2021-04-23 11:28:324626 下面将对于SiC MOSFET和SiC SBD两个系列,进行详细介绍
2023-11-01 14:46:19736 高频、高速开关是碳化硅(SiC) MOSFET的重要优势之一,这能让系统效率显著提升,但也会在寄生电感和电容上产生更大的振荡,从而在驱动电压上产生更大的尖峰。
2023-12-20 09:20:45943 有使用过SIC MOSFET 的大佬吗 想请教一下驱动电路是如何搭建的。
2021-04-02 15:43:15
电阻低,通道电阻高,因此具有驱动电压即栅极-源极间电压Vgs越高导通电阻越低的特性。下图表示SiC-MOSFET的导通电阻与Vgs的关系。导通电阻从Vgs为20V左右开始变化(下降)逐渐减少,接近
2018-11-30 11:34:24
。SiC-MOSFET体二极管的正向特性下图表示SiC-MOSFET的Vds-Id特性。在SiC-MOSFET中,以源极为基准向漏极施加负电压,体二极管为正向偏置状态。该图中Vgs=0V的绿色曲线基本上表示出体
2018-11-27 16:40:24
”)应用越来越广泛。关于SiC-MOSFET,这里给出了DMOS结构,不过目前ROHM已经开始量产特性更优异的沟槽式结构的SiC-MOSFET。具体情况计划后续进行介绍。在特征方面,Si-DMOS存在
2018-11-30 11:35:30
的小型化。 另外,SiC-MOSFET能够在IGBT不能工作的高频条件下驱动,从而也可以实现无源器件的小型化。 与600V~900V的Si-MOSFET相比,SiC-MOSFET的优势在于芯片
2023-02-07 16:40:49
,SiC-MOSFET能够在IGBT不能工作的高频条件下驱动,从而也可以实现无源器件的小型化。与600V~900V的Si-MOSFET相比,SiC-MOSFET的优势在于芯片面积小(可实现小型封装),而且体
2019-04-09 04:58:00
减小,所以耐受时间变长。另外,Vdd较低时发热量也会减少,所以耐受时间会更长。由于关断SiC-MOSFET所需的时间非常短,所以当Vgs的断路速度很快时,急剧的dI/dt可能会引发较大的浪涌电压。请使用
2018-11-30 11:30:41
的概述和应掌握的特征 性能评估事例的设计目标和电路使用评估板进行性能评估测量方法和结果重要检查点MOSFET的VDS和IDS、输出整流二极管的耐压变压器的饱和Vcc电压输出瞬态响应和输出电压上升波形温度
2018-11-27 16:38:39
`请问:图片中的红色白色蓝色模块是什么东西?芯片屏蔽罩吗?为什么加这个东西?抗干扰或散热吗?这是个SiC MOSFET DC-DC电源,小弟新手。。`
2018-11-09 11:21:45
MOSFET能够在1/35大小的芯片内提供与之相同的导通电阻。其原因是SiC MOSFET能够阻断的电压是Si MOSFET的10倍,同时具备更高的电流密度和更低的导通电阻,能够以更快速度(10 倍)在导
2019-07-09 04:20:19
的,但简洁性和设计优雅在工程领域被低估了。SemiSouth还有一个常关JFET,但事实证明它的批量生产太难了。今天,USCi,Inc。提供一种正常的SiC JFET,它采用共源共栅配置的低压硅
2023-02-27 13:48:12
栅极电压,在20V栅极电压下从几乎300A降低到12V栅极电压时的130A左右。即使碳化硅MOSFET的短路耐受时间短于IGTB的短路耐受时间,也可以通过集成在栅极驱动器IC中的去饱和功能来保护SiC
2019-07-30 15:15:17
,SiC-MOSFET能够在IGBT不能工作的高频条件下驱动,从而也可以实现无源器件的小型化。与600V~900V的Si-MOSFET相比,SiC-MOSFET的优势在于芯片面积小(可实现小型封装),而且体
2019-05-07 06:21:55
SiC-MOSFET的构成中,SiC-MOSFET切换(开关)时高边SiC-MOSFET的栅极电压产生振铃,低边SiC-MOSFET的栅极电压升高,SiC-MOSFET误动作的现象。通过下面的波形图可以很容易了解这是
2018-11-30 11:31:17
极-源极电压振铃。将栅极驱动放置在紧邻 SiC MOSFET 的位置,以最小的走线长度将栅极回路电感降至最低。此外,这种做法还有助于使各并联 MOSFET 设计之间的共源极电感保持恒定。以最小走线长
2022-03-24 18:03:24
Sic MOSFET 主要优势.更小的尺寸及更轻的系统.降低无源器件的尺寸/成本.更高的系统效率.降低的制冷需求和散热器尺寸Sic MOSFET ,高压开关的突破.SCT30N120
2017-07-27 17:50:07
的MOSFET和IGBT等各种功率元器件,尽情参考。测量SiC MOSFET栅-源电压:一般测量方法电源单元等产品中使用的功率开关器件大多都配有用来冷却的散热器,在测量器件引脚间的电压时,通常是无法将电压
2022-09-20 08:00:00
的最大电压。额定电压越大,器件的成本就越高。根据实践经验,额定电压应当大于干线电压或总线电压。这样才能提供足够的保护,使MOSFET不会失效。就选择MOSFET而言,必须确定漏极至源极间可能承受的最大电压
2011-08-17 14:18:59
开来,并应用于电缆以将电线与电缆所穿过的环境隔离开来。 SiC MOSFET可作为1200V,20A器件提供,在+ 15V栅极-源极电压下具有100mΩ。此外,固有的导通电阻降低也使SiC MOSFET
2022-08-12 09:42:07
Transistor)。由于具有较低的导通电阻(RDS(on))和较小尺寸,N沟道MOSFET在产品选择上超过了P沟道。在降压稳压器应用中,基于栅控电压极性、器件尺寸和串联电阻等多种因素,使用P沟道
2018-03-03 13:58:23
全球知名半导体制造商ROHM(总部位于日本京都市)的SiC MOSFET和SiC肖特基势垒二极管(以下简称“SiC SBD”)已被成功应用于大功率模拟模块制造商ApexMicrotechnology
2023-03-29 15:06:13
项目名称:SiC MOSFET元器件性能研究试用计划:申请理由本人在半导体失效分析领域有多年工作经验,熟悉MOSET各种性能和应用,掌握各种MOSFET的应用和失效分析方法,熟悉MOSFET的主要
2020-04-24 18:09:12
,以及源漏电压进行采集,由于使用的非隔离示波器,就在单管上进行了对两个波形进行了记录:绿色:栅极源极间电压;黄色:源极漏极间电压;由于Mosfet使用的SiC材料,通过分析以上两者电压的导通时间可以判断出
2020-06-07 15:46:23
。补充一下,所有波形的测试是去掉了鳄鱼夹,使用接地弹簧就近测量的,探头的***扰情况是很小的。最后,经过了半个小时的带载实验,在自然散热的情况下,测量了SIC-MOSFET的温度:图9 温度测量对于
2020-06-10 11:04:53
SIC加装了散热片:最后,焊接到板子上:注意:加装散热片时,因为底部位置有走线和元器件,散热片应预留一定的高度,避免短路。评估板硬件准备完成,接来了做简易的波形测量。通过使用说明书可知,这个评估板的PWM
2020-05-09 11:59:07
;Reliability (可靠性) " ,始终坚持“品质第一”SiC元器有三个最重要的特性:第一个高压特性,比硅更好一些;而是高频特性;三是高温特性。 罗姆第三代沟槽栅型SiC-MOSFET对应
2020-07-16 14:55:31
和更快的切换速度与传统的硅mosfet和绝缘栅双极晶体管(igbt)相比,SiC mosfet栅极驱动在设计过程中必须仔细考虑需求。本应用程序说明涵盖为SiC mosfet选择栅极驱动IC时的关键参数。
2023-06-16 06:04:07
要充分认识 SiC MOSFET 的功能,一种有用的方法就是将它们与同等的硅器件进行比较。SiC 器件可以阻断的电压是硅器件的 10 倍,具有更高的电流密度,能够以 10 倍的更快速度在导通和关断
2017-12-18 13:58:36
加大了充放电的串联电阻而使工作速度下降。因此,在CMOS电路中,当使用硼扩散条做连线用时要考虑到这一点。 当在NMOS的栅上施加相对于源的正电压VGS时,栅上的正电荷在P型衬底上感应出等量的负电荷,随着
2012-01-06 22:55:02
电平是否合乎规范值,同时也因加大了充放电的串联电阻而使工作速度下降。因此,在CMOS电路中,当使用硼扩散条做连线用时要考虑到这一点。 当在NMOS的栅上施加相对于源的正电压VGS时,栅上的正电荷在P型
2012-12-10 21:37:15
性能如何?650V-1200V电压等级的SiC MOSFET商业产品已经从Gen 2发展到了Gen 3,随着技术的发展,元胞宽度持续减小,比导通电阻持续降低,器件性能超越Si器件,浪涌电流、短路能力、栅
2022-03-29 10:58:06
和CN4的+18V、CN3和CN6的-3V为驱动器的电源。电路中增加了CGS和米勒钳位MOSFET,使包括栅极电阻在内均可调整。将该栅极驱动器与全SiC功率模块的栅极和源极连接,来确认栅极电压的升高情况
2018-11-27 16:41:26
各位大神,可否用IR2113 驱动共源集MOSfet ,且mosfet关断时,源集漏集电压最高为700V。
2017-08-16 16:03:26
低压共源共栅结构是什么?具有最小余度电压的共源共栅电流源是什么?
2021-09-29 06:47:22
`功率Mosfet参数介绍V(BR)DSS(有时候叫做BVDSS)是指在特定的温度和栅源短接情况下,流过漏极电流达到一个特定值时的漏源电压。这种情况下的漏源电压为雪崩击穿电压。V(BR)DSS是正
2012-01-12 16:12:20
比如,IRFP460,它的UGS(th)最小是2V,最大是4V,其特性曲线如下图所示。那么它的栅源间的电压要设置多大好呢?
2012-08-31 10:19:09
,FET的作用并不是立即断开输入与输出之间的连接,而是减轻那些具有破坏力的浪涌电流带来的严重后果。这需要通过一个控制器来调节输入电压(VIN)和输出电压(VOUT)之间MOSFET上的栅源偏压,使MOSFET处于饱和状态,从而阻止可能通过的电流(见图1)。
2020-10-29 06:54:03
极驱动器的优势和期望,开发了一种测试板,其中测试了分立式IGBT和SiC-MOSFET。标准电压源驱动器也在另一块板上实现,见图3。 图3.带电压源驱动器(顶部)和电流源驱动器(底部)的半桥
2023-02-21 16:36:47
频率选择演示了基于 1200V SiC MOSFET 的 500-840V 可变直流母线的 OBC 设计,用于 250-450V 电池电压 [10]。OBC的整体效率得到了优化,但是,1200V SiC
2023-02-27 09:44:36
的MOSFET电容器Cgs将开始放电。此时,MOSFET阻断特性保持不变。这个t1阶段被称为延时,它表征着MOSFET的响应时间。当MOSFET栅源电压Vgs达到栅极平台电压Vgs(Miller
2018-10-08 15:19:33
重要了。一个好的MOSFET驱动电路有以下几点要求:(1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡。(2
2017-01-09 18:00:06
MOSFET在产品选择上超过了P沟道。在降压稳压器应用中,基于栅控电压极性、器件尺寸和串联电阻等多种因素,使用P沟道MOSFET或N沟道MOSFET作为主开关。同步整流器应用几乎总是使用N沟道技术,这主要
2021-04-09 09:20:10
康华光主编的模电中讲到N型的增强型MOSFET、耗尽型MOSFET、JFET。关于漏极饱和电流的问题,耗尽型MOSFET、JFET中都有提到,都是在栅源电压等于0的时候,而增强型MOSFET在栅源
2019-04-08 03:57:38
的模块。分为由SiC MOSFET + SiC SBD构成的类型和只由SiC MOSFET构成的类型两种,可根据用途进行选择。
2019-03-12 03:43:18
在高度可靠、高性能的应用中,如电动/混合动力汽车,隔离栅级驱动器需要确保隔离栅在所有情况下完好无损。随着Si-MOSFET/IGBT不断改进,以及对GaN和SiC工艺技术的引进,现代功率转换器/逆变器的功率密度不断提高。
2019-08-09 07:03:09
和 –4V 输出电压以及 1W(...)主要特色用于在半桥配置中驱动 SiC MOSFET 的紧凑型双通道栅极驱动器解决方案4A 峰值拉电流和 6A 峰值灌电流驱动能力,适用于驱动 SiC
2018-10-16 17:15:55
本章将介绍最新的第三代SiC-MOSFET,以及可供应的SiC-MOSFET的相关信息。独有的双沟槽结构SiC-MOSFET在SiC-MOSFET不断发展的进程中,ROHM于世界首家实现了沟槽栅极
2018-12-05 10:04:41
MOS的结构碳化硅MOSFET(SiC MOSFET)N+源区和P井掺杂都是采用离子注入的方式,在1700℃温度中进行退火激活。一个关键的工艺是碳化硅MOS栅氧化物的形成。由于碳化硅材料中同时有Si和C
2019-09-17 09:05:05
- 栅极-源极电压: 20 V Vgs th-栅源极阈值电压: 2 V Qg-栅极电荷: 100 nC -小工作温度: - 55 C -大工作温度: + 155 C 配置: Single 通道模式
2020-03-04 10:34:36
损坏,在芯片整体温度提高的条件下,MOSFET更容易发生单元的热和电流不平衡,从而导致损坏。在实际应用中,应该基于系统最恶劣条件下来考虑击穿电压。选择漏源极电压BVDSS的基本原则为:在实际工作环境中
2023-02-20 17:21:32
CRD-060DD17P-2,采用市售1700V碳化硅(SiC)MOSFET的单端反激式转换器设计演示板。该设计采用1700V SiC MOSFET,采用新型7LD2PAK表面贴装封装,占板面
2019-04-29 09:25:59
MOSFET中的开关损耗为0.6 mJ。这大约是IGBT测量的2.5 mJ的四分之一。在每种情况下,均在 800 V、漏极/拉电流 10 A、环境温度 150 °C 和最佳栅极-发射极阈值电压下进行测试(图
2023-02-22 16:34:53
,FET的作用并不是立即断开输入与输出之间的连接,而是减轻那些具有破坏力的浪涌电流带来的严重后果。这需要通过一个控制器来调节输入电压(VIN)和输出电压(VOUT)之间MOSFET上的栅源偏压,使MOSFET处于饱和状态。
2019-08-06 06:28:49
低,可靠性高,在各种应用中非常有助于设备实现更低功耗和小型化。本产品于世界首次※成功实现SiC-SBD与SiC-MOSFET的一体化封装。内部二极管的正向电压(VF)降低70%以上,实现更低损耗的同时
2019-03-18 23:16:12
,导致局部的过热损坏,在芯片整体温度提高的条件下,MOSFET更容易发生单元的热和电流不平衡,从而导致损坏。在实际应用中,应该基于系统最恶劣条件下来考虑击穿电压。选择漏源极电压BVDSS的基本原则为:在
2016-09-06 15:41:04
与Si-MOSFET的栅极驱动的不同之处。主要的不同点是SiC-MOSFET在驱动时的VGS稍高,内部栅极电阻较高,因此外置栅极电阻Rg需要采用小阻值。Rg是外置电阻,属于电路设计的范畴。但是,栅极驱动电压
2018-11-27 16:54:24
220x180x50mm方框图,直流母线电压和开关频率选择图1显示了双向OBC的系统框图。基于1200V SiC MOSFET的OBC设计具有500-840V可变直流母线,可用于250-450V电池电压[10
2019-10-25 10:02:58
请问:驱动功率MOSFET,IBGT,SiC MOSFET的PCB布局需要考虑哪些因素?
2019-07-31 10:13:38
罗姆展出了采用沟道构造的SiC制肖特基势垒二极管(SBD)和MOSFET。沟道型SBD的特点在于,与普通SiC制SBD相比二极管导通电压(以下称导通电压)较低。沟道型SBD的导通电压为0.5V,降到了以往
2011-10-12 09:35:301111 PI的SIC1182K和汽车级SIC118xKQ SCALE-iDriver IC是单通道SiC MOSFET门极驱动器,可提供最大峰值输出门极电流且无需外部推动级。 SCALE-2门极驱动核和其他SCALE-iDriver门极驱动器IC还支持不同SiC架构中的不同电压,允许使用SiC MOSFET进行安全有效的设计。
2020-08-13 15:31:282476 开关特性是功率半导体开关器件最重要的特性之一,由器件在开关过程中的驱动电压、端电压、端电流表示。一般在进行器件评估时可以采用双脉冲测试,而在电路设计时直接测量在运行中的变换器上的器件波形,为了得
2022-06-02 11:04:062951 在IGBT时代,门极电压的选择比较统一,无非Vge=+15V/-15V或+15V/-8V或+15V/0V这几档。而在新兴的SiC MOSFET领域,还未有约定俗成的门极电压规范。
2022-06-06 09:57:072079 具有驱动器源极引脚的TO-247-4L和TO-263-7L封装SiC MOSFET,与不具有驱动器源极引脚的TO-247N封装SiC MOSFET产品相比,SiC MOSFET栅-源电压的行为不同。
2022-06-08 14:49:532945 具有驱动器源极引脚的TO-247-4L和TO-263-7L封装SiC MOSFET,与不具有驱动器源极引脚的TO-247N封装产品相比,SiC MOSFET的栅-源电压的行为不同。
2022-07-06 12:30:421114 和 MOSFET。目前可提供击穿电压为 600 至 1,700 V、额定电流为 1 至 60 A 的 SiC 开关。这里的重点是如何有效地测量 SiC MOSFET。
2022-07-27 11:03:451512 SiC MOSFET 的优势和用例是什么?
2022-12-28 09:51:201034 在大电流应用中利用 SiC MOSFET 模块
2023-01-03 14:40:29491 从本文开始,我们将进入SiC功率元器件基础知识应用篇的第一弹“SiC MOSFET:桥式结构中栅极-源极间电压的动作”。前言:MOSFET和IGBT等电源开关元器件被广泛应用于各种电源应用和电源线路中。
2023-02-08 13:43:22250 在探讨“SiC MOSFET:桥式结构中Gate-Source电压的动作”时,本文先对SiC MOSFET的桥式结构和工作进行介绍,这也是这个主题的前提。
2023-02-08 13:43:23340 上一篇文章中,简单介绍了SiC MOSFET桥式结构中栅极驱动电路的开关工作带来的VDS和ID的变化所产生的电流和电压情况。本文将详细介绍SiC MOSFET在LS导通时的动作情况。
2023-02-08 13:43:23300 本文的关键要点・通过采取措施防止SiC MOSFET中栅极-源极间电压的负电压浪涌,来防止SiC MOSFET的LS导通时,SiC MOSFET的HS误导通。・具体方法取决于各电路中所示的对策电路的负载。
2023-02-09 10:19:16589 本文的关键要点・具有驱动器源极引脚的TO-247-4L和TO-263-7L封装SiC MOSFET,与不具有驱动器源极引脚的TO-247N封装SiC MOSFET产品相比,SiC MOSFET栅-源电压的行为不同。
2023-02-09 10:19:20301 通过驱动器源极引脚改善开关损耗本文的关键要点・具有驱动器源极引脚的TO-247-4L和TO-263-7L封装SiC MOSFET,与不具有驱动器源极引脚的TO-247N封装产品相比,SiC MOSFET的栅-源电压的...
2023-02-09 10:19:20335 关键要点・除了测量位置之外,探头的安装位置也很重要。・如果不慎将电压探头安装在磁通量急剧变化的空间内,就会受到磁通量变化的影响,而体现在观测波形上。
2023-02-09 10:19:22345 在SiC MOSFET的开发与应用方面,与相同功率等级的Si MOSFET相比,SiC MOSFET导通电阻、开关损耗大幅降低,适用于更高的工作频率,另由于其高温工作特性,大大提高了高温稳定性。
2023-02-12 15:29:032102 SiC功率MOSFET内部晶胞单元的结构,主要有二种:平面结构和沟槽结构。平面SiC MOSFET的结构,
2023-02-16 09:40:102938 如何为SiC MOSFET选择合适的驱动芯片?(英飞凌官方) 由于SiC产品与传统硅IGBT或者MOSFET参数特性上有所不同,并且其通常工作在高频应用环境中, 为SiC MOSFET选择合适的栅极
2023-02-27 14:42:0479 时,由于较高的 di/dt 与 du/dt 容易产生电压电流尖峰、振荡、上下管直通或超过负向安全电压,干扰驱动电路输出电压等问题。因此为了保障 SiC MOSFET 安全可靠性的运行,需从驱动侧对 S
2023-02-27 14:43:028 绍的需要准确测量栅极和源极之间产生的浪涌。在这里,将为大家介绍在测量栅极和源极之间的电压时需要注意的事项。我们将以SiC MOSFET为例进行讲解,其实所讲解的内容也适用于一般的MOSFET和IGBT等各种功率元器件,尽情参考。
2023-04-06 09:11:46731 本文是“SiC MOSFET:栅极-源极电压的浪涌抑制方法”系列文章的总结篇。介绍SiC MOSFET的栅极-源极电压产生的浪涌、浪涌抑制电路、正电压浪涌对策、负电压浪涌对策和浪涌抑制电路的电路板
2023-04-13 12:20:02814 绍的需要准确测量栅极和源极之间产生的浪涌。在这里,将为大家介绍在测量栅极和源极之间的电压时需要注意的事项。我们将以SiC MOSFET为例进行讲解,其实所讲解的内容也适用于一般的MOSFET和IGBT等各种功率元器件,尽情参考。
2023-05-08 11:23:14644 如何选取SiC MOSFET的Vgs门极电压及其影响
2023-12-05 16:46:29483 SiC设计干货分享(一):SiC MOSFET驱动电压的分析及探讨
2023-12-05 17:10:21439 SiC MOSFET:桥式结构中栅极-源极间电压的动作
2023-12-07 14:34:17223 SiC MOSFET的桥式结构
2023-12-07 16:00:26157 MOSFET对驱动电路有一些基本要求,接下来将详细介绍这些要求。 首先,SIC MOSFET对于驱动电路的电压要求非常严格。由于SIC MOSFET的工作电压通常在几百伏特到数千伏特之间,因此驱动电路需要能提供足够高的电压以确保正常工作。此外,由于SIC MOSFET具有较高的耐压能力
2023-12-21 11:15:49417 MOSFET的基本结构。SIC MOSFET是一种由碳化硅材料制成的传导类型晶体管。与传统的硅MOSFET相比,SIC MOSFET具有更高的迁移率和击穿电压,以及更低的导通电阻和开关损耗。这些特性使其成为高温高频率应用中的理想选择。 SIC MOSFET在电路中具有以下几个主要的作用: 1. 电源开关
2023-12-21 11:27:13687
评论
查看更多