本文简要比较了下SiC Mosfet管和Si IGBT管的部分电气性能参数并分析了这些电气参数对电路设计的影响,并且根据SiC Mosfet管开关特性和高压高频的应用环境特点,推荐了金升阳可简化设计隔离驱动电路的SIC驱动电源模块。
2015-06-12 09:51:234738 SiC功率MOSFET内部晶胞单元的结构,主要有二种:平面结构和沟槽结构。平面SiC MOSFET的结构,如图1所示。这种结构的特点是工艺简单,单元的一致性较好,雪崩能量比较高。但是,这种结构
2023-02-12 16:03:093214 SiC功率MOSFET由于其出色的物理特性,在充电桩及太阳能逆变器等高频应用中日益得到重视。因为SiC MOSFET开关频率高达几百K赫兹,门极驱动的设计在应用中就变得格外关键。因为在短路
2023-06-01 10:12:07998 当前量产主流SiC MOSFET芯片元胞结构有两大类,是按照栅极沟道的形状来区分的,平面型和沟槽型。
2023-06-07 10:32:074310 谈谈SiC MOSFET的短路能力
2023-08-25 08:16:131020 下面将对于SiC MOSFET和SiC SBD两个系列,进行详细介绍
2023-11-01 14:46:19736 SiC MOSFET模块目前广泛运用于新能源汽车逆变器、车载充电、光伏、风电、智能电网等领域[2-9] ,展示了新技术的优良特性。
2024-02-19 16:29:22206 SiC MOSFET并联的动态均流与IGBT类似,只是SiC MOSFET开关速度更快,对一些并联参数会更为敏感。
2021-09-06 11:06:233813 有使用过SIC MOSFET 的大佬吗 想请教一下驱动电路是如何搭建的。
2021-04-02 15:43:15
电阻低,通道电阻高,因此具有驱动电压即栅极-源极间电压Vgs越高导通电阻越低的特性。下图表示SiC-MOSFET的导通电阻与Vgs的关系。导通电阻从Vgs为20V左右开始变化(下降)逐渐减少,接近
2018-11-30 11:34:24
的区别所谓SiC-MOSFET-体二极管的特性所谓SiC-MOSFET-沟槽结构SiC-MOSFET与实际产品所谓SiC-MOSFET-SiC-MOSFET的应用实例所谓
2018-11-27 16:40:24
”)应用越来越广泛。关于SiC-MOSFET,这里给出了DMOS结构,不过目前ROHM已经开始量产特性更优异的沟槽式结构的SiC-MOSFET。具体情况计划后续进行介绍。在特征方面,Si-DMOS存在
2018-11-30 11:35:30
- ID特性 SiC-MOSFET与IGBT不同,不存在开启电压,所以从小电流到大电流的宽电流范围内都能够实现低导通损耗。 而Si-MOSFET在150°C时导通电阻上升为室温条件下的2倍以上
2023-02-07 16:40:49
采用IGBT这种双极型器件结构(导通电阻变低,则开关速度变慢),就可以实现低导通电阻、高耐压、快速开关等各优点兼备的器件。3. VD - ID特性SiC-MOSFET与IGBT不同,不存在开启电压,所以
2019-04-09 04:58:00
确认现在的产品情况,请点击这里联系我们。ROHM SiC-MOSFET的可靠性栅极氧化膜ROHM针对SiC上形成的栅极氧化膜,通过工艺开发和元器件结构优化,实现了与Si-MOSFET同等的可靠性
2018-11-30 11:30:41
晶体管的结构与特征比较所谓SiC-MOSFET-与Si-MOSFET的区别与IGBT的区别所谓SiC-MOSFET-体二极管的特性所谓SiC-MOSFET-沟槽结构SiC-MOSFET与实际产品所谓
2018-11-27 16:38:39
`请问:图片中的红色白色蓝色模块是什么东西?芯片屏蔽罩吗?为什么加这个东西?抗干扰或散热吗?这是个SiC MOSFET DC-DC电源,小弟新手。。`
2018-11-09 11:21:45
专门的沟槽式栅极结构(即栅极是在芯片表面构建的一个凹槽的侧壁上成形的),与平面式SiC MOSFET产品相比,输入电容减小了35%,导通电阻减小了50%,性能更优异。图4 SCT3030KL的内部电路
2019-07-09 04:20:19
(MPS)结构,该结构保持最佳场分布,但通过结合真正的少数载流子注入也可以增强浪涌能力。如今,SiC二极管非常可靠,它们已经证明了比硅功率二极管更有利的FIT率。 MOSFET替代品 2008年推出
2023-02-27 13:48:12
(SiC)MOSFET即将取代硅功率开关,需要能够应对不断发展的市场的新型驱动和转换解决方案。由于其优异的热特性,SiC器件在各种应用中代表了优选的解决方案,例如汽车领域的功率驱动电路。SiC
2019-07-30 15:15:17
1. 器件结构和特征SiC能够以高频器件结构的SBD(肖特基势垒二极管)结构得到600V以上的高耐压二极管(Si的SBD最高耐压为200V左右)。因此,如果用SiC-SBD替换现在主流产品快速PN结
2019-03-14 06:20:14
1. 器件结构和特征SiC能够以高频器件结构的SBD(肖特基势垒二极管)结构得到600V以上的高耐压二极管(Si的SBD最高耐压为200V左右)。因此,如果用SiC-SBD替换现在主流产品快速PN结
2019-04-22 06:20:22
采用IGBT这种双极型器件结构(导通电阻变低,则开关速度变慢),就可以实现低导通电阻、高耐压、快速开关等各优点兼备的器件。3. VD - ID特性SiC-MOSFET与IGBT不同,不存在开启电压,所以
2019-05-07 06:21:55
的不是全SiC功率模块特有的评估事项,而是单个SiC-MOSFET的构成中也同样需要探讨的现象。在分立结构的设计中,该信息也非常有用。“栅极误导通”是指在高边SiC-MOSFET+低边
2018-11-30 11:31:17
半导体的关键特性是能带隙,能带动电子进入导通状态所需的能量。宽带隙(WBG)可以实现更高功率,更高开关速度的晶体管,WBG器件包括氮化镓(GaN)和碳化硅(SiC),以及其他半导体。 GaN和SiC
2022-08-12 09:42:07
包括: ·在相臂拓扑结构中优化多SiC MOSFET和二极管芯片组件的布局; ·采用对称设计,每个开关最多可并联12个SiC MOSFET芯片; ·每个管芯均与自身栅极串联电阻并联,实现均匀
2018-10-23 16:22:24
上一章针对与Si-MOSFET的区别,介绍了关于SiC-MOSFET驱动方法的两个关键要点。本章将针对与IGBT的区别进行介绍。与IGBT的区别:Vd-Id特性Vd-Id特性是晶体管最基本的特性之一
2018-12-03 14:29:26
失效模式等。项目计划①根据文档,快速认识评估板的电路结构和功能;②准备元器件,相同耐压的Si-MOSFET和业内3家SiC-MOSFET③项目开展,按时间计划实施,④项目调试,优化,比较,分享。预计成果分享项目的开展,实施,结果过程,展示项目结果
2020-04-24 18:09:12
SiC Mosfet管组成上下桥臂电路,整个评估板提供了一个半桥电路,可以支持Buck,Boost和半桥开关电路的拓扑。SiC Mosfet的驱动电路主要有BM6101为主的芯片搭建而成,上下桥臂各有一块
2020-06-07 15:46:23
是48*0.35 = 16.8V,负载我们设为0.9Ω的阻值,通过下图来看实际的输入和输出情况:图4 输入和输出通过电子负载示数,输出电流达到了17A。下面使用示波器测试SIC-MOSFET管子的相关
2020-06-10 11:04:53
项目名称:基于Sic MOSFET的直流微网双向DC-DC变换器试用计划:申请理由本人在电力电子领域(数字电源)有五年多的开发经验,熟悉BUCK、BOOST、移相全桥、LLC和全桥逆变等电路拓扑。我
2020-04-24 18:08:05
;Reliability (可靠性) " ,始终坚持“品质第一”SiC元器有三个最重要的特性:第一个高压特性,比硅更好一些;而是高频特性;三是高温特性。 罗姆第三代沟槽栅型SiC-MOSFET对应
2020-07-16 14:55:31
Navitas的GeneSiC碳化硅(SiC) mosfet可为各种器件提供高效率的功率传输应用领域,如电动汽车快速充电、数据中心电源、可再生能源、能源等存储系统、工业和电网基础设施。具有更高的效率
2023-06-16 06:04:07
要充分认识 SiC MOSFET 的功能,一种有用的方法就是将它们与同等的硅器件进行比较。SiC 器件可以阻断的电压是硅器件的 10 倍,具有更高的电流密度,能够以 10 倍的更快速度在导通和关断
2017-12-18 13:58:36
MOSFET栅极为低电平时,其漏极电压上升直至使SiC JFET的GS电压达到其关断的负压时,这时器件关断。Cascode结构主要的优点是相同的导通电阻有更小的芯片面积,由于栅极开关由Si MOSFET控制
2022-03-29 10:58:06
的全SiC功率模块最新的全SiC功率模块采用最新的SiC-MOSFET-(即第三代沟槽结构SiC-MOSFET),以进一步降低损耗。以下为示例。下一次计划详细介绍全SiC功率模块的特点和优势。关键要点
2018-11-27 16:38:04
SiC-MOSFET和SiC肖特基势垒二极管的相关内容,有许多与Si同等产品比较的文章可以查阅并参考。采用第三代SiC沟槽MOSFET,开关损耗进一步降低ROHM在行业中率先实现了沟槽结构
2018-11-27 16:37:30
混合SET/MOSFET 结构与特性是什么?如何利用SET/MOSFET 混合结构的传输特性去设计数值比较器?
2021-04-13 07:12:01
对于高压开关电源应用,碳化硅或SiC MOSFET带来比传统硅MOSFET和IGBT明显的优势。在这里我们看看在设计高性能门极驱动电路时使用SiC MOSFET的好处。
2018-08-27 13:47:31
1. SiC模块的特征大电流功率模块中广泛采用的主要是由Si材料的IGBT和FRD组成的IGBT模块。ROHM在世界上首次开始出售搭载了SiC-MOSFET和SiC-SBD的功率模块。由IGBT的尾
2019-03-12 03:43:18
应的SiC-MOSFET一览表。有SCT系列和SCH系列,SCH系列内置SiC肖特基势垒二极管,包括体二极管的反向恢复特性在内,特性得到大幅提升。一览表中的SCT3xxx型号即第三代沟槽结构SiC-MOSFET
2018-12-05 10:04:41
两种原子存在,需要非常特殊的栅介质生长方法。其沟槽星结构的优势如下(图片来源网络):平面vs沟槽SiC-MOSFET采用沟槽结构可最大限度地发挥SiC的特性。相比GAN, 它的应用温度可以更高。
2019-09-17 09:05:05
SiCMOSFET具有出色的开关特性,但由于其开关过程中电压和电流变化非常大,因此如Tech Web基础知识 SiC功率元器件“SiC MOSFET:桥式结构中栅极-源极间电压的动作-前言”中介
2022-09-20 08:00:00
阻并提高可靠性。东芝实验证实,与现有SiC MOSFET相比,这种设计结构在不影响可靠性的情况下[1],可将导通电阻[2](RonA)降低约20%。功率器件是管理各种电子设备电能,降低功耗以及实现碳中和
2023-04-11 15:29:18
本半导体制造商罗姆面向工业设备和太阳能发电功率调节器等的逆变器、转换器,开发出耐压高达1200V的第2代SiC(Silicon carbide:碳化硅)MOSFET“SCH2080KE”。此产品损耗
2019-03-18 23:16:12
使用的N-ch 1700V 3.7A的SiC-MOSFET:SCT2H12NZ(右)的导通电阻与VGS特性比较图。从比较图中可以看出,上述IC的栅极驱动电压在每种MOSFET将要饱和前变为VGS。由于该比较不是
2018-11-27 16:54:24
从本篇开始,介绍近年来MOSFET中的高耐压MOSFET的代表超级结MOSFET。功率晶体管的特征与定位首先来看近年来的主要功率晶体管Si-MOSFET、IGBT、SiC-MOSFET的功率与频率
2018-11-28 14:28:53
损耗。最新的模块中采用第3代SiC-MOSFET,损耗更低。采用第3代SiC-MOSFET,损耗更低组成全SiC功率模块的SiC-MOSFET在不断更新换代,现已推出新一代产品的定位–采用沟槽结构的第3代产品
2018-12-04 10:11:50
请问:驱动功率MOSFET,IBGT,SiC MOSFET的PCB布局需要考虑哪些因素?
2019-07-31 10:13:38
近年来,宽禁带半导体SiC器件得到了广泛重视与发展。SiC MOSFET与Si MOSFET在特定的工作条件下会表现出不同的特性,其中重要的一条是SiC MOSFET在长期的门极电应力下会产生阈值漂移现象。本文阐述了如何通过调整门极驱动负压,来限制SiC MOSFET阈值漂移的方法。
2020-07-20 08:00:006 ROHM 最近推出了 SiC MOSFET 的新系列产品“SCT3xxx xR 系列”。SCT3xxx xR 系列采用最新的沟槽栅极结构,进一步降低了导通电阻;同时通过采用单独设置栅极驱动器
2020-11-25 10:56:0030 SiC MOSFET单管在并联条件下的均流特性。 仿真只是工具,仿真无法替代实验,仿真只供参考,切勿痴迷迷信。以上寒暄既毕,我们直奔主题: 1、选取仿真研究对象 SiC MOSFET
2021-03-11 09:22:053311 桩、不间断电源系统以及能源储存等应用场景中的需求不断提升。 SiC MOSFET的特性 更好的耐高温与耐高压特性 基于SiC材料的器件拥有比传统Si材料制品更好的耐高温耐高压特性,其能获得更高的功率密度和能源效率。由于碳化硅(SiC)的介电击穿强度大约是硅(Si)的
2021-08-13 18:16:276631 自2018年特斯拉Model3率先搭载基于全SiC MOSFET模块的逆变器后,全球车企纷纷加速SiC MOSFET在汽车上的应用落地。
2021-12-08 15:55:511670 具有驱动器源极引脚的TO-247-4L和TO-263-7L封装SiC MOSFET,与不具有驱动器源极引脚的TO-247N封装产品相比,SiC MOSFET的栅-源电压的行为不同。
2022-07-06 12:30:421114 关于SiC MOSFET的并联问题,英飞凌已陆续推出了很多技术资料,帮助大家更好的理解与应用。此文章将借助器件SPICE模型与Simetrix仿真环境,分析SiC MOSFET单管在并联条件下的均流特性。
2022-08-01 09:51:151687 SiC MOSFET 的优势和用例是什么?
2022-12-28 09:51:201034 在大电流应用中利用 SiC MOSFET 模块
2023-01-03 14:40:29491 近年来超级结(Super Junction)结构的MOSFET(以下简称“SJ-MOSFET”)应用越来越广泛。关于SiC-MOSFET,ROHM已经开始量产特性更优异的沟槽式结构的SiC-MOSFET。
2023-02-08 13:43:19525 上一章针对与Si-MOSFET的区别,介绍了关于SiC-MOSFET驱动方法的两个关键要点。本章将针对与IGBT的区别进行介绍。与IGBT的区别:Vd-Id特性,Vd-Id特性是晶体管最基本的特性之一。
2023-02-08 13:43:201722 上一章介绍了与IGBT的区别。本章将对SiC-MOSFET的体二极管的正向特性与反向恢复特性进行说明。如图所示,MOSFET(不局限于SiC-MOSFET)在漏极-源极间存在体二极管。
2023-02-08 13:43:20790 在SiC-MOSFET不断发展的进程中,ROHM于世界首家实现了沟槽栅极结构SiC-MOSFET的量产。这就是ROHM的第三代SiC-MOSFET。沟槽结构在Si-MOSFET中已被广为采用,在SiC-MOSFET中由于沟槽结构有利于降低导通电阻也备受关注。
2023-02-08 13:43:211381 从本文开始,我们将进入SiC功率元器件基础知识应用篇的第一弹“SiC MOSFET:桥式结构中栅极-源极间电压的动作”。前言:MOSFET和IGBT等电源开关元器件被广泛应用于各种电源应用和电源线路中。
2023-02-08 13:43:22250 在探讨“SiC MOSFET:桥式结构中Gate-Source电压的动作”时,本文先对SiC MOSFET的桥式结构和工作进行介绍,这也是这个主题的前提。
2023-02-08 13:43:23340 本文将针对上一篇文章中介绍过的SiC MOSFET桥式结构的栅极驱动电路及其导通(Turn-on)/关断( Turn-off)动作进行解说。
2023-02-08 13:43:23491 上一篇文章中,简单介绍了SiC MOSFET桥式结构中栅极驱动电路的开关工作带来的VDS和ID的变化所产生的电流和电压情况。本文将详细介绍SiC MOSFET在LS导通时的动作情况。
2023-02-08 13:43:23300 本文的关键要点・具有驱动器源极引脚的TO-247-4L和TO-263-7L封装SiC MOSFET,与不具有驱动器源极引脚的TO-247N封装SiC MOSFET产品相比,SiC MOSFET栅-源电压的行为不同。
2023-02-09 10:19:20301 通过驱动器源极引脚改善开关损耗本文的关键要点・具有驱动器源极引脚的TO-247-4L和TO-263-7L封装SiC MOSFET,与不具有驱动器源极引脚的TO-247N封装产品相比,SiC MOSFET的栅-源电压的...
2023-02-09 10:19:20335 在SiC MOSFET的开发与应用方面,与相同功率等级的Si MOSFET相比,SiC MOSFET导通电阻、开关损耗大幅降低,适用于更高的工作频率,另由于其高温工作特性,大大提高了高温稳定性。
2023-02-12 15:29:032102 在SiC MOSFET的开发与应用方面,与相同功率等级的Si MOSFET相比,SiC MOSFET导通电阻、开关损耗大幅降低,适用于更高的工作频率,另由于其高温工作特性,大大提高了高温稳定性。
2023-02-12 16:13:002571 SiC MOSFET沟槽结构将栅极埋入基体中形成垂直沟道,尽管其工艺复杂,单元一致性比平面结构差。但是,沟槽结构可以增加单元密度,没有JFET效应,寄生电容更小,开关速度快,开关损耗非常低;而且
2023-02-16 09:43:011446 如图所示,MOSFET(不局限于SiC-MOSFET)在漏极-源极间存在体二极管。从MOSFET的结构上讲,体二极管是由源极-漏极间的pn结形成的,也被称为“寄生二极管”或“内部二极管”。对于MOSFET来说,体二极管的性能是重要的参数之一,在应用中使用时,其性能发挥着至关重要的作用。
2023-02-24 11:47:402315 在SiC-MOSFET不断发展的进程中,ROHM于世界首家实现了沟槽栅极结构SiC-MOSFET的量产。这就是ROHM的第三代SiC-MOSFET。
2023-02-24 11:48:18426 ROHM针对SiC上形成的栅极氧化膜,通过工艺开发和元器件结构优化,实现了与Si-MOSFET同等的可靠性。
2023-02-24 11:50:12784 下面给出的电路图是在桥式结构中使用SiC MOSFET时最简单的同步式boost电路。该电路中使用的SiC MOSFET的高边(HS)和低边(LS)是交替导通的,为了防止HS和LS同时导通,设置了两个SiC MOSFET均为OFF的死区时间。右下方的波形表示其门极信号(VG)时序。
2023-02-27 13:41:58737 如何为SiC MOSFET选择合适的驱动芯片?(英飞凌官方) 由于SiC产品与传统硅IGBT或者MOSFET参数特性上有所不同,并且其通常工作在高频应用环境中, 为SiC MOSFET选择合适的栅极
2023-02-27 14:42:0479 碳化硅 MOSFET 驱动电路保护 SiC MOSFET 作为第三代宽禁带器件之一,可以在多个应用场合替换 Si MOSFET、IGBT,发挥其高频特性,实现电力设备高功率密度。然而被应用于桥式电路
2023-02-27 14:43:028 SiC MOSFET沟槽结构将栅极埋入基体中形成垂直沟道,尽管其工艺复杂,单元一致性比平面结构差。
2023-04-01 09:37:171329 与 Si 器件相比, SiC 器件具有更加优异的电气性能, 新特性给其结温评估带来了新挑 战, 许多适用于 Si 器件的结温评估方法可能不再适用于 SiC 器件。首先对 SiC 金属氧化物半导体
2023-04-15 10:03:061454 MOSFET 与 IGBT 之间的共性和差异,以便用户充分利用每种器件。本系列文章将概述 安森美 M 1 1200 V SiC MOSFET 的关键特性及驱动条件对它的影响 ,作为安森美提供的全方位
2023-06-08 20:45:02281 MOSFET 与 IGBT 之间的共性和差异,以便用户充分利用每种器件。本系列文章将概述 安森美 M 1 1200 V SiC MOSFET 的关键特性及驱动条件对它的影响 ,作为安森美提供的全方位
2023-06-16 14:40:01390 之间的共性和差异,以便用户充分利用每种器件。本系列文章将概述安森美 M 1 1200 V SiC MOSFET 的关键特性及驱动条件对它的影响,作为安森美提供的全方位宽禁带生态系统的一部分,还将提供
2023-06-16 14:39:39538 SiC功率MOSFET内部晶胞单元的结构,主要有二种:平面结构和沟槽结构。平面SiCMOSFET的结构,如图1所示。这种结构的特点是工艺简单,单元的一致性较好,雪崩能量比较高。但是,这种结构的中间
2023-06-19 16:39:467 SiC MOSFET体二极管的关断特性与IGBT电路中硅基PN二极管不同,这是因为SiC MOSFET体二极管具有独特的特性。对于1200V SiC MOSFET来说,输出电容的影响较大,而PN
2023-01-04 10:02:071115 探究快速开关应用中SiC MOSFET体二极管的关断特性
2023-01-12 14:33:03991 首先,是一张制造测试完成了的SiC MOSFET的晶圆(wafer)。
2023-08-06 10:49:071106 碳化硅(SiC)MOSFET支持功率电子电路以超快的开关速度和远超100V/ns和10A/ns的电压和电流摆率下工作。
2023-08-28 14:46:53318 点击蓝字 关注我们 对于高压开关电源应用,碳化硅或 SiC MOSFET 与传统硅 MOSFET 和 IGBT 相比具有显著优势。开关超过 1,000 V的高压电源轨以数百 kHz 运行并非易事
2023-10-18 16:05:02328 SiC设计干货分享(一):SiC MOSFET驱动电压的分析及探讨
2023-12-05 17:10:21439 SiC MOSFET:桥式结构中栅极-源极间电压的动作
2023-12-07 14:34:17223 SiC MOSFET的桥式结构
2023-12-07 16:00:26157 【科普小贴士】按结构分类的MOSFET特性摘要
2023-12-13 14:15:07127 SIC MOSFET对驱动电路的基本要求 SIC MOSFET(碳化硅金属氧化物半导体场效应晶体管)是一种新兴的功率半导体器件,具有良好的电气特性和高温性能,因此被广泛应用于各种驱动电路中。SIC
2023-12-21 11:15:49417 可行的解决方案。 首先,让我们了解一下SIC MOSFET的基本原理和结构。SIC(碳化硅)MOSFET是一种基于碳化硅材料制造的金属氧化物半导体场效应晶体管。相较于传统的硅MOSFET,SIC MOSFET具有更高的载流能力、更低的导通电阻和更优秀的耐高温性能,可以应用于高频、高功率和高温环境
2023-12-21 11:15:52272 MOSFET的基本结构。SIC MOSFET是一种由碳化硅材料制成的传导类型晶体管。与传统的硅MOSFET相比,SIC MOSFET具有更高的迁移率和击穿电压,以及更低的导通电阻和开关损耗。这些特性使其成为高温高频率应用中的理想选择。 SIC MOSFET在电路中具有以下几个主要的作用: 1. 电源开关
2023-12-21 11:27:13687
评论
查看更多