电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>模拟技术>如何降低SiC/SiO₂界面缺陷

如何降低SiC/SiO₂界面缺陷

收藏

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论

查看更多

相关推荐

sio2_sio2是什么意思

在自然界中sio2二氧化硅的存在是非常广泛的,本内容解释了sio2是什么意思,sio2的物理性质是什么,让大家充分了解sio2
2011-12-13 10:41:1320242

改善4H-SiC晶圆表面缺陷的高压碳化硅解决方案

数量增多。 碳化硅(SiC)在大功率、高温、高频等极端条件应用领域具有很好的前景。但尽管商用4H-SiC单晶圆片的结晶完整性最近几年显着改进,这些晶圆的缺陷密度依然居高不下。经研究证实,晶圆衬底的表面处理时间越长,则表面
2016-11-04 13:00:021600

物理气相传输法生长SiC晶圆中的缺陷和测试

和Si晶体拉晶工艺类似,PVT法制备SiC单晶和切片形成晶圆过程中也会引入多种缺陷。这些缺陷主要包括:表面缺陷;引入深能级的点缺陷;位错;堆垛层错;以及碳包裹体和六方空洞等。其中和和Si晶体拉晶工艺
2023-12-26 17:18:471088

SiC外延层的缺陷控制研究

探索SiC外延层的掺杂浓度控制与缺陷控制,揭示其在高性能半导体器件中的关键作用。
2024-01-08 09:35:41631

SIC MOSFET

有使用过SIC MOSFET 的大佬吗 想请教一下驱动电路是如何搭建的。
2021-04-02 15:43:15

SIC438BEVB-B

SIC438BEVB-B
2023-04-06 23:31:02

SiC MOSFET FIT率和栅极氧化物可靠性的关系

,即非本征缺陷时才有效。与Si MOSFET相比,现阶段SiC MOSFET栅极氧化物中的非本征缺陷密度要高得多。电筛选降低了可靠性风险与没有缺陷的器件相比,有非本征缺陷的器件更早出现故障。无缺陷的器件
2022-07-12 16:18:49

SiC MOSFET SCT3030KL解决方案

与IGBT相比,SiC MOSFET具备更快的开关速度、更高的电流密度以及更低的导通电阻,非常适用于电网转换、电动汽车、家用电器等高功率应用。但是,在实际应用中,工程师需要考虑SiC MOSFET
2019-07-09 04:20:19

SiC MOSFET的器件演变与技术优势

一些问题,其中大部分与栅极氧化物直接相关。1978年科罗拉多州立大学的研究人员测量了纯SiC与生长的SiO 2之间的杂乱过渡区域。已知这种过渡区具有高密度的界面态和氧化物陷阱,其抑制载流子迁移率并导致
2023-02-27 13:48:12

SiC SBD 晶圆级测试求助

SiC SBD 晶圆级测试 求助:需要测试的参数和测试方法谢谢
2020-08-24 13:03:34

SiC SBD的器件结构和特征

设计得低,开启电压也可以做得低一些,但是这也将导致反向偏压时的漏电流增大。ROHM的第二代SBD通过改进制造工艺,成功地使漏电流和恢复性能保持与旧产品相等,而开启电压降低了约0.15V。SiC
2019-03-14 06:20:14

SiC SBD的正向特性

设计得低,开启电压也可以做得低一些,但是这也将导致反向偏压时的漏电流增大。ROHM的第二代SBD通过改进制造工艺,成功地使漏电流和恢复性能保持与旧产品相等,而开启电压降低了约0.15V。SiC
2019-04-22 06:20:22

SiC-MOSFET功率晶体管的结构与特征比较

说明一下,DMOS是平面型的MOSFET,是常见的结构。Si的功率MOSFET,因其高耐压且可降低导通电阻,近年来超级结(Super Junction)结构的MOSFET(以下简称“SJ-MOSFET
2018-11-30 11:35:30

SiC-MOSFET的可靠性

栅极偏压)试验(+22V、150℃)中,在装置中未发生故障和特性波动,顺利通过1000小时测试。阈值稳定性(栅极正偏压)SiC上形成的栅极氧化膜界面并非完全没有陷阱,因此当栅极被长时间施加直流的正偏压
2018-11-30 11:30:41

SiC-MOSFET的应用实例

本章将介绍部分SiC-MOSFET的应用实例。其中也包括一些以前的信息和原型级别的内容,总之希望通过这些介绍能帮助大家认识采用SiC-MOSFET的好处以及可实现的新功能。另外,除了
2018-11-27 16:38:39

SiC-SBD与Si-PND的正向电压比较

,VF变高,不会热失控。但是VF上升,因此具有IFSM(瞬间大电流耐受能力)比Si-FRD低的缺点。SiC-SBD的VF特性改善为提升具有卓越本质的SiC-SBD的特性,使之更加易用,开发了VF降低
2018-11-30 11:52:08

SiC-SBD大幅降低开关损耗

时间trr快(可高速开关)・trr特性没有温度依赖性・低VF(第二代SBD)下面介绍这些特征在使用方面发挥的优势。大幅降低开关损耗SiC-SBD与Si二极管相比,大幅改善了反向恢复时间trr。右侧的图表为
2019-03-27 06:20:11

SiC-SBD的发展历程

vs IF)、以及正向电压与抗浪涌电流特性(VF vs IFSM)比较图。第2代SiC-SBD通过改善制造工艺,保持了与以往产品同等的漏电流和trr性能,同时将VF降低了约0.15V。因而改善了VF带来
2018-11-30 11:51:17

SiC-SBD的特征以及与Si二极管的比较

耐压。要想提高Si-SBD的耐压,只要增厚图中的n-型层、降低载流子浓度即可,但这会带来阻值上升、VF变高等损耗较大无法实际应用的问题。因此,Si-SBD的耐压200V已经是极限。而SiC拥有超过硅
2018-11-29 14:35:50

SiC/GaN具有什么优势?

基于SiC/GaN的新一代高密度功率转换器SiC/GaN具有的优势
2021-03-10 08:26:03

SiC46x是什么?SiC46x的主要应用领域有哪些?

SiC46x是什么?SiC46x有哪些优异的设计?SiC46x的主要应用领域有哪些?
2021-07-09 07:11:50

SiC功率元器件的开发背景和优点

/电子设备实现包括消减待机功耗在内的节能目标。在这种背景下,削减功率转换时产生的能耗是当务之急。不用说,必须将超过Si极限的物质应用于功率元器件。例如,利用SiC功率元器件可以比IGBT的开关损耗降低85
2018-11-29 14:35:23

SiC功率器件SiC-MOSFET的特点

电导率调制,向漂移层内注入作为少数载流子的空穴,因此导通电阻比MOSFET还要小,但是同时由于少数载流子的积聚,在Turn-off时会产生尾电流,从而造成极大的开关损耗。SiC器件漂移层的阻抗比Si器件低
2019-05-07 06:21:55

SiC功率器件概述

电流和FRD的恢复电流引起的较大的开关损耗,通过改用SiC功率模块可以明显减少,因此具有以下效果:开关损耗的降低,可以带来电源效率的改善和散热部件的简化(例:散热片的小型化,水冷/强制风冷的自然风冷化
2019-05-06 09:15:52

SiC功率器件概述

,相同耐压的器件,SiC的单位面积的漂移层阻抗可以降低到Si的1/300。而Si材料中,为了改善伴随高耐压化而引起的导通电阻增大的问题,主要采用如IGBT(Insulated Gate Bipolar
2019-07-23 04:20:21

SiC功率模块的特征与电路构成

电流和FRD的恢复电流引起的较大的开关损耗,通过改用SiC功率模块可以明显减少,因此具有以下效果:开关损耗的降低,可以带来电源效率的改善和散热部件的简化(例:散热片的小型化,水冷/强制风冷的自然风冷化
2019-03-25 06:20:09

SiC器件与硅器件相比有哪些优越的性能?

与硅相比,SiC有哪些优势?SiC器件与硅器件相比有哪些优越的性能?碳化硅器件的缺点有哪些?
2021-07-12 08:07:35

Sic MOSFET SCT30N120 、SCT50N120 功率管

Sic MOSFET 主要优势.更小的尺寸及更轻的系统.降低无源器件的尺寸/成本.更高的系统效率.降低的制冷需求和散热器尺寸Sic MOSFET ,高压开关的突破.SCT30N120
2017-07-27 17:50:07

Sic mesfet工艺技术研究与器件研究

Sic mesfet工艺技术研究与器件研究针对SiC 衬底缺陷密度相对较高的问题,研究了消除或减弱其影响的工艺技术并进行了器件研制。通过优化刻蚀条件获得了粗糙度为2?07 nm的刻蚀表面;牺牲氧化
2009-10-06 09:48:48

降低汽车电子PCB缺陷率的六个方法

的测试参数均会有所偏差。因而需定期调校机器参数,以保证测试参数的精准度。测试设备在相当一部分的大型PCB企业均半年或一年进行整机保养、调校内部性能参数。追求“零缺陷”汽车用PCB一直为广大PCB人努力的方向,但受制程设备、原材料等多方面的限制,至今PCB世界百强企业仍在不断探索降低PPm的方法。
2019-03-26 06:20:02

降低车用PCB缺陷率的6大方法

或一年进行整机保养、调校内部性能参数。追求“零缺陷”汽车用PCB一直为广大PCB人努力的方向,但受制程设备、原材料等多方面的限制,至今PCB世界百强企业仍在不断探索降低PPm的方法。
2018-09-19 16:13:12

CY8C5867LTI-LP025 SPI通信是否也需要使用SIO端口?

我正在使用 CY8C5867LTI-LP025。 我知道我需要使用 SIO 端口来使用 I2C、UART 等。 SPI通信是否也需要使用 SIO 端口?
2024-03-06 06:23:39

GaN和SiC区别

。碳化硅与Si相比,SiC具有: 1.导通电阻降低两个数量级2.电源转换系统中的功率损耗较少3.更高的热导率和更高的温度工作能力4.由于其物理特性固有的材料优势而提高了性能 SiC在600 V和更高
2022-08-12 09:42:07

【论文】基于1.2kV全SiC功率模块的轻型辅助电源

MOSFET整流器和逆变器的工作频率。另外,LC滤波器的截止频率也可以提高,这意味着LC滤波器的容量将会降低,从而降低ACL和ACC滤波电路的损耗和重量。表1APS产品的规格2、基于1.2kV全SiC
2017-05-10 11:32:57

【转帖】华润微碳化硅/SiC SBD的优势及其在Boost PFC中的应用

如下图所示,常温25℃,采用SiC SBD开启损耗略好,但125℃时采用SiFRD的开启损耗为SiC SBD的两倍。 图:双脉冲测试不同温度开启损耗对比 3、SiC SBD可以降低电流尖峰,改善系统
2023-10-07 10:12:26

为何使用 SiC MOSFET

。设计挑战然而,SiC MOSFET 技术可能是一把双刃剑,在带来改进的同时,也带来了设计挑战。在诸多挑战中,工程师必须确保:以最优方式驱动 SiC MOSFET,最大限度降低传导和开关损耗。最大
2017-12-18 13:58:36

什么是碳化硅(SiC)?它有哪些用途?

什么是碳化硅(SiC)?它有哪些用途?碳化硅(SiC)的结构是如何构成的?
2021-06-18 08:32:43

从硅过渡到碳化硅,MOSFET的结构及性能优劣势对比

/+15V)温度175℃下进行HTGBR和HTRB实验1000h无产品失效。除了常规AEC-Q101中要求的1000h小时实验,派恩杰半导体对于栅极寿命经行了大量研究。由于SiC/SiO2界面存在比Si
2022-03-29 10:58:06

低功耗SiC二极管实现最高功率密度

都已充分证明其高品质水平。在基板处理、外延生长和制造方面的进步显着地降低缺陷密度,我们将看到持续的工艺改进和更高的量。安森美半导体在整个工艺周期采用了独特的方法,以确保客户获得最高品质的产品。另一
2018-10-29 08:51:19

使用SiC-SBD的优势

Si-FRD低。SiC-SBD的优势从SiC-SBD的这些特征可以看出,替代Si-PND/FRD的优势是得益于SiC-SBD的“高速性”。  1.trr高速,因此可大幅降低恢复损耗,实现高效率  2.同样
2018-11-29 14:33:47

SiC功率模块介绍

SiC功率模块”量产。与以往的Si-IGBT功率模块相比,“全SiC”功率模块可高速开关并可大幅降低损耗。关于这一点,根据这之前介绍过的SiC-SBD和SiC-MOSFET的特点与性能,可以很容易理解
2018-11-27 16:38:04

SiC功率模块的开关损耗

的IGBT模块相比,具有1)可大大降低开关损耗、2)开关频率越高总体损耗降低程度越显著 这两大优势。下图是1200V/300A的全SiC功率模块BSM300D12P2E001与同等IGBT的比较。左图
2018-11-27 16:37:30

内置SiC SBD的Hybrid IGBT 在FRD+IGBT的车载充电器案例中 开关损耗降低67%

内置SiC肖特基势垒二极管的IGBT:RGWxx65C系列内置SiC SBD的Hybrid IGBT在FRD+IGBT的车载充电器案例中开关损耗降低67%关键词* • SiC肖特基势垒二极管(SiC
2022-07-27 10:27:04

在功率二极管中损耗最小的SiC-SBD

的优势。大幅降低开关损耗SiC-SBD与Si二极管相比,大幅改善了反向恢复时间trr。右侧的图表为SiC-SBD与Si-FRD(快速恢复二极管)的trr比较。恢复的时间trr很短,二极管关断时的反向电流
2018-12-04 10:26:52

如何降低汽车用PCB缺陷

六大方法降低汽车用PCB缺陷
2021-01-28 07:57:56

开关损耗更低,频率更高,应用设备体积更小的全SiC功率模块

ROHM在全球率先实现了搭载ROHM生产的SiC-MOSFET和SiC-SBD的“全SiC”功率模块量产。与以往的Si-IGBT功率模块相比,“全SiC”功率模块可高速开关并可大幅降低
2018-12-04 10:14:32

搭载SiC-MOSFET和SiC-SBD的功率模块

电流和FRD的恢复电流引起的较大的开关损耗,通过改用SiC功率模块可以明显减少,因此具有以下效果:开关损耗的降低,可以带来电源效率的改善和散热部件的简化(例:散热片的小型化,水冷/强制风冷的自然风冷化
2019-03-12 03:43:18

新能源汽车SiC MOSFET芯片漏电红外热点定位+FIB解析

800万的EMMI/OBIRCH在显示SiC芯片漏电点上的效果一样,但是价格却大大降低。对热点进行FIB切割分析:我们观察到此发热点金属化薄膜铝条被熔断。存在缺陷或性能不佳的半导体器件通常会表现出异常
2018-11-02 16:25:31

沟槽结构SiC-MOSFET与实际产品

结构SiC-MOSFET的量产。这就是ROHM的第三代SiC-MOSFET。沟槽结构在Si-MOSFET中已被广为采用,在SiC-MOSFET中由于沟槽结构有利于降低导通电阻也备受关注。然而,普通的单
2018-12-05 10:04:41

浅析SiC-MOSFET

SiC-MOSFET 是碳化硅电力电子器件研究中最受关注的器件。成果比较突出的就是美国的Cree公司和日本的ROHM公司。在国内虽有几家在持续投入,但还处于开发阶段, 且技术尚不完全成熟。从国内
2019-09-17 09:05:05

浅析SiC功率器件SiC SBD

设计得低,开启电压也可以做得低一些,但是这也将导致反向偏压时的漏电流增大。ROHM的第二代SBD通过改进制造工艺,成功地使漏电流和恢复性能保持与旧产品相等,而开启电压降低了约0.15V。SiC
2019-05-07 06:21:51

深爱一级代理SIC953xD系列 /SIC全系列支持

深爱全系列支持SIC9531DSIC9532DSIC9533DSIC9534DSIC9535DSIC9536DSIC9537DSIC9538DSIC9539DSIC9942B/DSIC9943B
2021-11-13 14:58:25

深爱代理SIC953XD..SIC9531D.SIC9532D.SIC9533D.SIC9534D.SIC9535D

低功率因素方案SIC953XD系列:TYPESPFMOSFETPackage **范围SIC9531D 0.514Ω500VSOP7
2021-09-07 17:39:06

碳化硅SiC技术导入应用的最大痛点

和可再生能源,如果没有冷却组件,效率也会更好,而且有助于降低成本、尺寸和环境负担。  SiC仍处于进化曲线的起点,它还能走多远呢?系统工程师急切地等待着发现,但我们可以根据SiC如何模仿硅器件的发展做出一些
2023-02-27 14:28:47

第三代半导体材料盛行,GaN与SiC如何撬动新型功率器件

粗糙散射在SiC反型层中起主要作用;反之,沟道散射以库仑散射为主,此时高密度的界面态电荷将成为降低沟道迁移率的主要因素。  4.总结通过学习这两款新型的功率器件,不仅在设计上,更取得了实质性的效果。来源
2017-06-16 10:37:22

罗姆SiC-SBD替代Si-PND/Si-FRD有什么优势

改善,并进一步降低了第2代达成的低VF。SiC-SBD、SiーSBD、Si-PND的特征SiC-SBD为形成肖特基势垒,将半导体SiC与金属相接合(肖特基结)。结构与Si肖特基势垒二极管基本相同,仅
2019-07-10 04:20:13

罗姆成功实现SiC-SBD与SiC-MOSFET的一体化封装

低,可靠性高,在各种应用中非常有助于设备实现更低功耗和小型化。本产品于世界首次※成功实现SiC-SBD与SiC-MOSFET的一体化封装。内部二极管的正向电压(VF)降低70%以上,实现更低损耗的同时
2019-03-18 23:16:12

车用SiC元件讨论

25度上升到摄氏200度时,阈值电压值(Vth)降低了600mV,击穿电压(BV)上升了约50V,不难看出,SiC MOSFET性能明显高于矽MOSFET。图4 : SiC SCT30N120中
2019-06-27 04:20:26

采用第3代SiC-MOSFET,不断扩充产品阵容

ROHM在全球率先实现了搭载ROHM生产的SiC-MOSFET和SiC-SBD的“全SiC”功率模块量产。与以往的Si-IGBT功率模块相比,“全SiC”功率模块可高速开关并可大幅降低
2018-12-04 10:11:50

表面氢化降低SiC/金属接触间界面态密度的机理

研究了SiC表面氢化降低界面态密度的机理。采用缓慢氧化、稀释的HF刻蚀、沸水浸泡的表面氢化处理方法,降低SiC表面态密度。该方法用于SiC器件的表面处理,在100℃以下制备了理想
2009-05-07 20:31:4435

SiC气体传感器

SiC 肖特基二极管气体传感器可以广泛应用于检测气体排放物和气体泄露。通过采用PdCr 合金,可以提高Pd/ SiC 气体传感器的灵敏度。同时,在Pd 层和SiC 之间引入SnO2 作为界面层也是提高
2009-06-22 13:49:3416

ITO玻璃技术之SiO2阻挡膜层规格

ITO玻璃技术之SiO2阻挡膜层规格  SiO2 阻挡膜层规格
2008-10-25 16:04:251408

六大方法降低汽车用PCB缺陷

六大方法降低汽车用PCB缺陷率 前言 :汽车电子市场是继电脑、通讯之后PCB的第三大应用领域。随着汽车从传统意义上的机械产品,逐步演化、发展成为
2009-11-16 08:57:23490

镀复SiO2膜的电容器介质膜

镀复SiO2膜的电容器介质膜     成功一种能在几百小时连续沉积SiO2膜的新颖电子束蒸发装置,获国家发明专利,在此基础上
2009-12-08 09:03:32702

什么是Prescott/SiO2F?

什么是Prescott/SiO2F? 这是Intel最新的CPU核心,目前还只有Pentium 4而没有低端的赛扬采用,其与Northwood最大的区别是采用了0.09um制造工艺
2010-02-04 11:28:54394

SiC,SiC是什么意思

SiC,SiC是什么意思 SiC是一种Ⅳ-Ⅳ族化合物半导体材料,具有多种同素异构类型。其典型结构可分为两类:一类是闪锌矿结构的立方SiC晶型,称为3C
2010-03-04 13:25:266541

SiC产业链都包含哪些环节?#硬声创作季

SiC
电子学习发布于 2022-11-20 21:17:16

SiC器件的核心挑战#硬声创作季

SiC
电子学习发布于 2022-11-20 21:18:34

14.1 SiC基本性质(上)_clip001

SiC
jf_75936199发布于 2023-06-24 19:12:34

14.1 SiC基本性质(上)_clip002

SiC
jf_75936199发布于 2023-06-24 19:13:16

14.1 SiC基本性质(下)

SiC
jf_75936199发布于 2023-06-24 19:14:08

14.2 SiC晶体结构和能带

SiC
jf_75936199发布于 2023-06-24 19:22:10

何谓全SiC功率模块?

罗姆在全球率先实现了搭载罗姆生产的SiC-MOSFET和SiC-SBD的“全SiC功率模块”量产。与以往的Si-IGBT功率模块相比,“全SiC”功率模块可高速开关并可大幅降低损耗。
2018-05-17 09:33:1313514

SiC器件中SiC材料的物性和特征,功率器件的特征,SiC MOSFET特征概述

各种多种晶型,它们的物性值也各不相同。其中,4H-SiC最合适用于功率器件制作。另外,SiC是唯一能够热氧化形成SiO2的化合物半导体,所以适合制备MOS型功率器件。
2018-07-15 11:05:419257

采用SiC材料元器件的特性结构介绍

各种多种晶型,它们的物性值也各不相同。其中,4H-SiC最合适用于功率器件制作。另外,SiC是唯一能够热氧化形成SiO2的化合物半导体,所以适合制备MOS型功率器件。
2018-09-29 09:08:008115

创新工艺可以消除SiC衬底中的缺陷

日本关西学院大学和丰田通商于3月1日宣布,他们已开发出“动态AGE-ing”技术,这是一种表面纳米控制工艺技术,可以消除使SiC衬底上的半导体性能变差的缺陷
2021-03-06 10:20:083028

华秋DFM专业设计分析软件-一键监查降低设计缺陷

华秋DFM专业设计分析软件-一键监查降低设计缺陷
2021-07-19 19:13:050

华秋DFM专业设计分析软件-一键检查降低设计缺陷

华秋DFM专业设计分析软件-一键检查降低设计缺陷
2021-07-23 15:05:110

在APT32F102中使用SIO的应用范例

本文介绍了在APT32F102中使用SIO的应用范例。,SIO 模块是一个串行输入输出的控制器,可以模拟多种串行通信协议,支持双向数据传输。 由 D0, D1, DL, DH 四个对象组合编码,可以用于 MCU 外围硬件接口不够,但又需要和其它设 备通信或者器件自定协议的场合。
2022-06-02 14:44:235

降低 SiC 电阻之路

本文基于PGC 咨询公司进行的分析,研究了当今的 650-V 和 1,200-V SiC MOSFET,揭示了这些问题,包括栅极氧化物可靠性的优化,这有助于降低比导通电阻,降低碳化硅成本。
2022-07-29 17:19:05952

如何消除SiC MOSFET——栅极电路设计中的错误及其对稳健性的影响

为什么需要关注 SiC MOSFET 栅极?尽管具有传统的 SiO 2栅极氧化物,但该氧化物的性能比传统 Si 基半导体中的经典 Si-SiO 2界面更差。这是由于在SiC 的 Si 终止面上生长
2022-08-04 09:23:041129

简要介绍筛选后器件经过马拉松(Marathon)实验的典型结果

目前针对SiC的研究已相当深入,仍有不少人关注SiC材料的栅氧能力,本文对此再做一个简要介绍。如图1所示,相较于Si基材料,SiCSiO2栅氧层界面缺陷密度更高,SiC早期失效、非本征失效(虚线)发生的概率要比Si材料的高三四个数量级
2022-08-05 11:21:311220

利用缺陷信息数据库探索界面工程,助力GaN基肖特基势垒二极管的研究

阻等性能,同时影响器件的可靠性。近期,天津赛米卡尔科技有限公司技术团队开发出了完备的缺陷信息数据库,并对GaN基TMBS的界面特性进行了系统性研究,深入剖析了界面缺陷对GaN基TMBS器件性能的影响,并完善了图1所展示的肖特基接触界面附近存在的
2022-10-08 09:39:33612

搭载了SiC-MOSFET/SiC-SBD的全SiC功率模块介绍

ROHM在全球率先实现了搭载ROHM生产的SiC-MOSFET和SiC-SBD的“全SiC”功率模块量产。与以往的Si-IGBT功率模块相比,“全SiC”功率模块可高速开关并可大幅降低损耗。
2023-02-10 09:41:081333

SiC MOSFET和SiC IGBT的区别

  在SiC MOSFET的开发与应用方面,与相同功率等级的Si MOSFET相比,SiC MOSFET导通电阻、开关损耗大幅降低,适用于更高的工作频率,另由于其高温工作特性,大大提高了高温稳定性。
2023-02-12 15:29:032102

R课堂 | 使用新一代SiC MOSFET降低损耗实证 —前言—

关键要点 ・ SiC MOSFET因其在降低功率转换损耗方面的出色表现而备受关注。 ・ 以DC-DC转换器和EV应用为例,介绍使用新一代(第4代)SiC MOSFET所带来的优势–降低
2023-02-15 23:45:05343

破解SiC MOS难题,新技术减少50%碳残留

近日,韩国企业EQ TechPlus宣布,他们开发了一种下一代氧化膜沉积设备,用于大规模生产SiC功率半导体,与采用传统高温热氧化设备相比,该设备可以将SiC界面碳含量降低约50%。
2023-06-13 16:46:14452

6.3.6 不同晶面上的氧化硅/SiC 界面特性∈《碳化硅技术基本原理——生长、表征、器件和应用》

6.3.6不同晶面上的氧化硅/SiC界面特性6.3氧化及氧化硅/SiC界面特性第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:6.3.5.5界面的不稳定性∈《碳化硅技术
2022-01-21 09:35:56706

5.3.1.1 本征缺陷∈《碳化硅技术基本原理——生长、表征、器件和应用》

5.3.1.1本征缺陷5.3.1SiC中的主要深能级缺陷5.3SiC中的点缺陷第5章碳化硅的缺陷及表征技术《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:5.2.3扩展缺陷SiC器件性能
2022-01-06 09:27:16693

5.2.3 扩展缺陷SiC器件性能的影响∈《碳化硅技术基本原理——生长、表征、器件和应用》

5.2.3扩展缺陷SiC器件性能的影响5.2SiC的扩展缺陷第5章碳化硅的缺陷及表征技术《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:5.2.1SiC主要的扩展缺陷&5.2.2
2022-01-06 09:25:55621

浅析SiC MOS新技术:沟道电阻可降85%

我们知道,SiC MOSFET现阶段最“头疼”的问题就是栅氧可靠性引发的导通电阻和阈值电压等问题,最近,日本东北大学提出了一项新的外延生长技术,据说可以将栅氧界面缺陷降低99.5%,沟道电阻可以降低85.71%,整体SiC MOSFET损耗可以降低30%。
2023-10-11 12:26:49612

照明的绿色革命--降低制造过程中的缺陷

电子发烧友网站提供《照明的绿色革命--降低制造过程中的缺陷率.pdf》资料免费下载
2023-11-02 09:55:250

使用SiC MOSFET时如何尽量降低电磁干扰和开关损耗

使用SiC MOSFET时如何尽量降低电磁干扰和开关损耗
2023-11-23 09:08:34333

揭示界面导电网络对锂离子电池SiO基负极快充性能影响的基本机理

高导电性的界面可以改善一氧化硅(SiO)的快充性能,但是目前为止,界面导电网络质量如何影响输运行为、力学稳定性,以及微观结构与性能之间的量化关系的潜在机制尚未得到系统的研究和理解。
2023-12-12 09:21:15321

4H-SiC缺陷概述

4H-SiC概述(生长、特性、应用)、Bulk及外延层缺陷、光致发光/拉曼光谱法/DLTS/μ-PCD/KOH熔融/光学显微镜,TEM,SEM/散射光等表征方法。
2023-12-28 10:38:03487

已全部加载完成