这纯属补课的东西,能不能看,用不用的到,看官自己决定。
固体钽电容是将钽粉压制成型,在高温炉中烧结成阳极体,其电介质是将阳极体放入酸中赋能,形成多孔性非晶型Ta2O5介质膜,其工作电解质为硝酸锰溶液经高温分解形成MnO2,通过石墨层作为引出连接用。
容量较小、价格也比铝电容贵,而且耐电压及电流能力较弱。它被应用于大容量滤波的地方,像CPU插槽附近就看到钽电容的身影,多同陶瓷电容,电解电容配合使用或是应用于电压、电流不大的地方。
①额定容量,即容值[uF];
②DC,直流漏电流[uA];
③损耗[%],耗散因子(DF值);
④ESR,等效串联电阻,[Ω]
一般钽电容能承受的浪涌电压大约为额定电压或类别电压的1.3倍,超过浪涌电压很容易导致Ta2O5介质的击穿,下表出示了一般固体钽电容在25℃&85度℃,125℃浪涌电压值。
一般不允许对钽电容施加反向电压,并且不可在纯交流的环境中应用,若在不得以情况下允许时间小量的反向电压。25℃环境下:小于或等于10%Ur或1V(取较小者)
稳压二极管也叫稳压管,它在电路中一般起到稳定电压的作用,也可以为电路提供基准电压值。稳压二极管使用特殊工艺制造,这种工艺使它在反向击穿时仍然可以长时间稳定工作,不损坏,而工作在反向击穿状态的稳压管只要工作电流保持在一定范围,则它两端电压波动的范围就很小,稳压管正是利用这个特性实现稳压的。
英文名称Zener diode,又叫齐纳二极管。利用PN结反向击穿状态,其电流可在很大范围内变化而电压基本不变的现象,制成的起稳压作用的二极管。此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件.在这临界击穿点上,反向电阻降低到一个很小的数值,在这个低阻区中电流增加而电压则保持恒定,稳压二极管是根据击穿电压来分档的,因为这种特性,稳压管主要被作为稳压器或电压基准元件使用。稳压二极管可以串联起来以便在较高的电压上使用,通过串联就可获得更高的稳定电压。
稳压管在电路应用中一般要串联一个限流电阻,用来保护稳压管,避免工作电流过大导致损坏,另外通过选定合理的限流电阻值,也可以避免稳压管工作电流过小而进入反向截止区,失去稳压效果。所以说这个限流电阻R即起到保护作用,也起到设定合适工作电流的作用。
在限流电阻值固定的情况下,能影响到稳压管工作电流的因素有两个,一是输入端电压UI的波动,另一个是负载电阻RL大小的变化。现在我们假设一种情况:即输入电压UI不变,但负载电阻RL变小时是如何稳压的。
由于负载电阻RL变小会直接导致负载通路的电流IR变大,所以流过限流电阻的电流IR会增大,导致限流电阻压降增大,所以稳压管两端电压(即负载电阻两端电压UO)变小,导致稳压管电流IDZ减小,这又会引起限流电阻电流减小,所以限流电阻电压当然也会随之减小,最终导致稳压管电压又增大,即负载电阻两端电压增大。这个过程的核心是稳压管端电压变小导致稳压电流减小,从而把稳压管两端电压又重新推高。具体变化过程如下图8所示:
续流二极管(flyback diode),有时也称为飞轮二极管或是snubber二极管,是一种配合电感性负载使用的二极管,当电感性负载的电流有突然的变化或减少时,电感二端会产生突变电压,可能会破坏其他元件。配合续流二极管时,其电流可以较平缓地变化,避免突波电压的发生。
续流二极管经常和储能元件一起使用,防止电压电流突变,提供通路。电感可以经过它给负载提供持续的电流,以免负载电流突变,起到平滑电流的作用。在开关电源中,就能见到一个由二极管和电阻串连起来构成的的续流电路。这个电路与变压器原边并联。当开关管关断时,续流电路可以释放掉变压器线圈中储存的能量,防止感应电压过高,击穿开关管。一般选择快速恢复二极管或者肖特基二极管就可以了,用来把线圈产生的反向电势通过电流的形式消耗掉,可见“续流二极管”并不是一个实质的元件,它只不过在电路中起到的作用称做“续流”
不使用pn结,而是使用某种金属与n型半导体结作为二极管。这种结叫做肖特基结。肖特基二极管的VF非常小,而且不使用空穴,因此非常高速,这一点可以说达到理想状态,但是因为反向电流IR大,所以不适合用作高耐压元件。
不同二极管种类的静态特性差异
肖特基二极管的最大特点是正向压降小,反向恢复时间短。肖特基二极管的开启电压低,电荷储存效应小,适于高频工作。同样的电流情况下,它的正向压降要比普通二极管小许多。
所以肖特基二极管与普通二极管最明显的区别有以下几点:
1、肖特基二极管正向导通压降比普通二极管低,所以低功耗。
2、肖特基二极管反向恢复时间比普通二极管短,所以工作频率更高。
3、肖特基二极管反向耐压比普通二极管低,一般低于200V。
4、肖特基二极管比普通的二极管通过的电流强。
5、肖特基二极管比普通二极管的结电容小。
6、肖特基二极管可以通过高频电流。
肖特基二极管并联在线两端,当流过线圈中的电流消失时,线圈产生的感应电动势通过二极管和线圈构成的回路做功而消耗掉.从而保护了电路中的其它原件的安全.续流二极管在电路中反向并联在继电器或电感线圈的两端,当电感线圈断电时其两端的电动势并不立即消失,此时残余电动势通过一个肖特基二极管释放,起这种作用的二极管叫续流二极管。电感线圈、继电器、可控硅电路等都会用到续流二极管防止反向击穿现象。凡是电路中的继电器线圈两端和电磁阀接口两端都要接续流二极管。接法如上面的图,肖特基二极管的负极接线圈的正极,肖特基二极管的正极接线圈的负极。不过,你要清楚,续流二极管并不是利用肖特基二极管的反方向耐压特性,而是利用肖特基二极管的单方向正向导通特性。
普通二极管如1N4007就可以作为续流二极管,不过,最好是用快速恢复二极管或者肖特基二极管。
快速恢复二极管可以用:FR107、1N4148
肖特基二极管可以用:1N5819
一般选择快速恢复二极管或者肖特基二极管,如FR254、FR255、FR256、FR257、1N5204、1N5205、1N5206、1N5207、1N5208、1N5404、1N5405、5406、5407、5408等。
(1) 续流二极管是防止直流线圈断电时,产生自感电势形成的高电压对相关元器件造成损害的有效手段
(2) 续流二极管的极性不能接错,否则将造成短路事故
(3) 续流二极管对直流电压总是反接的,即二极管的负极接直流电的正极端
(4) 续流二极管是工作在正向导通状态,并非击穿状态或高速开关状态
二极管的耐压,就是反向能加多大电压,续流二极管在电路中是反向连接的。比如你的电路中,线圈加的是12V,那么你的二极管方向耐压值就必须要大于12V才行。不过一般的二极管反向耐压值都非常高。
二极管的最大正向导通电流,比如1N4148最大正向导通电流是150mA,那么如果你的线圈电流太大,就会烧坏续流二极管。所以1N4148只适合小电流的线圈保护,比如5V的继电器。
恢复二极管,称为FRD,是一种具有良好开关特性和较短反向恢复时间的半导体二极管。它具有与普通二极管相同的单向导电性。它主要用于开关电源,脉宽调制器,逆变器和其他电子设备。在电路中,它主要用作高频整流二极管,续流二极管或阻尼二极管。快速恢复二极管主要特点是这种二极管由导通转到截止所需要的时间非常短,这个时间称为反向恢复时间,反向恢复时间比较小的管子可明显降低开关时的功耗.此外还常常被用来产生快速上升的脉冲信号.由于二极管高电平过渡到低电平,或者是从低电平过渡到高电平,这个期间的转换时间较长,将严重的影响到电路的速度,最终导致到电路的特性很不好!快速恢复二极管是介于肖特基和普通2极管之间的,它既有肖特基二极管的导通压降低(没有肖特基低),速度快,又有比较高的耐压(肖特基一般耐压很低),快恢复主要用于频率较高的场合做整流,比如开关电源的二次整流,用于市电的整流,快恢复二极管没有问题,但由于快恢复二极管材料和工艺的原因,它的PN结较普通整流管要薄,在过瞬间大电流的能力较普通的为弱,尤其是在滤波电容过大的情况下,管子电流选择不当会在一瞬间烧毁快恢复的PN结。
三极管的选型:
特征频率fT:当f=fT时,三极管完全失去电流放大功能。工作频率大于fT,电路将不正常工作。
工作电压/电流:用这个参数可以指定该管的电压电流使用范围。
hFE:电流放大倍数β。
VCEO:集电极发射极反向击穿电压,表示临界饱和时的饱和电压;
PCM:最大允许耗散功率。
1、Icm是集电极最大允许电流,三极管工作时,当它的集电极电流超过一定数值时,他的电流放大系数β将下降。为此规定三级电流放大系数β变化不超过允许值时的集电极最大电流称为Icm。所以在使用中当集电极电流Ic超过Icm时不至于损坏三级管,但会使β值减小,影响电路的工作性能;
2、BVCEO是三级管基极开路时,集电极-发射极反向击穿电压。如果在使用中加载集电极与发射极之间的电压超过这个数值时,将可能使三极管产生很大的集电电流,这种现象叫击穿。三极管击穿后会造成永久性损坏或性能下降;
3、Pcm是集电极最大允许耗散功率。三极管在工作是,集电极电流集电在集电结上会产生热量而使三极管发热。若耗散功率过大,三极管将烧坏。在使用中如果三极管在大于Pcm下长时间工作,将会损坏三极管。需要注意的是大功率的三极管给出的最大允许耗散功率都是在加有一定规格散热器情况下的参数。使用中一定要注意这一点。4、特征频率fT。随着工作频率的升高,三极管的放大能力将会下降,对应β=1时的频率fT叫作三极管的特征频率
小功率三极管BVCEO的选择可以根据电路的电源电压来决定,一般情况下只要三极管的BVCEO大于电路中电源的最高电压即可。当三极管的负载是感性负载是,如变压器、线圈等时BVCEO数值的选择要慎重,感性负载上的感应电压可能达到电源电压的2~3倍(如节能灯中的升压三极管)。一般小功率三极管的BVCEO都不低于15V,所以在无电感元件的低电压电路中也不用考虑这个参数。
一般小功率三极管的Icm在30-50mA之间,对于小信号电路一般可以不予以考虑。但对于驱动继电器及推动大功率音箱的管子要认真计算一下。当然首先要了解继电器的吸合电流是多少毫安,一次来确定三极管的Icm,当我们估算了电路中三极管的工作电流(即集电极电流),有知道了三极管电集到发射极之后的电压后,就可以根据P=U*I来计算三极管的集电极最大允许耗散功率Pcm。
差动放大电路
三种放大电路
https://www.bilibili.com/video/BV1js4y1A7GU/?spm_id_from=333.788&vd_source=4d701f61fa0ceae0a5ab579df26e314c
现态:状态机当前状态。
触发条件:改变当前状态的发生条件。
动作:状态改变产生相应的动作。
次态:状态机激活触发条件后跳转到的下一状态。
注意:状态和动作是不同的,状态是持续的而动作是间断的,改变状态产生动作,动作完成后,状态依旧持续。
1) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。2) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。
MAX3232芯片内部在接收端是有一个5K的下拉电阻的,加上TVS管的结电容,就构成了一个RC电路,由于电容两端电压不能进行突变,所以在串口发送信号的上升沿和下降沿,电容会进行放电和充电。
容抗与频率和电容值成反比,电容越大、频率越高则容抗越小。可以简单理解为电容越大,滤波效果越好。那么有了0.1uF的电容旁路,再加一个0.01uF的电容不是浪费吗?实际上,对一个特定电容,当信号频率低于其自谐振频率时呈容性,当信号频率高于其自谐振频率时呈感性。当用0.1uF和0.01uF的两个电容并联时,相当于拓宽了滤波频率范围。
电压降,加在上面的电流大概是1mA
当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2v,硅管约为0.6v)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3v,硅管约为0.7v),称为二极管的“正向压降”。 二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。 箭头只能从P到N
三极管一定要始终围绕着它是一个流控型器件,即B→E的电流Ib控制着C→E的电流Ic,基极到发射极是控制,集电极到发射极的电流是被控制。 ①集-射最大反向电压(VCEO):基极开路时,集-射极耐电压值,超过此值会击穿三极管。 ②集电极工作电流(ICRM):集电极允许长期工作的电流。 ③集电极最大功率(PCM):最大允许耗散功率,实际功率过大,三极管会烧坏。 ④电流放大倍数(HFE):共射电路集电极与基极电流的比值,β=IC/IB。 ⑤特征频率(FT):频率升高,β下降到1时对应的频率值。就是说在这个频率下工作的三极管,已失去放大能力,因此在选用三极管时,一般管子的特征频率品要比电路的工作频率至少高出3倍以上,但不是越高越好,如果选的太高,就会引起电路的振荡。
电源输入端建议用固态铝电解电容,电源输出端建议钽电容或陶瓷电容。上拉4.7k,下拉1k
审核编辑:汤梓红
评论
查看更多