本内容主要介绍了硅衬底LED芯片主要制造工艺,介绍了什么是led衬底,led衬底材料等方面的制作工艺知识
2011-11-03 17:45:13
4626 ![](https://file1.elecfans.com//web2/M00/A6/0F/wKgZomUMO4WAVBwQAAAV8As_vG8362.jpg)
65W氮化镓电源原理图
2022-10-04 22:09:30
的3.25eV和氮化镓的3.4eV。而氧化镓的击穿场强理论上可以达到8eV/cm,是氮化镓的2.5倍,是碳化硅的3倍多。从功率半导体特性来看,与前代半导体材料相比,氧化镓材料具备更高的击穿电场强度与更低的导通电
2023-03-15 11:09:59
的透明晶棒,但由于纯度不够,杂质较多,晶体存在晶格缺陷,位错大于1000,造成外延加工时候镀砷化镓晶格位错不准,做出的芯片后LED不发光,或发光率低,造成下游客户没法用。进而后期进而退货影响到晶棒的销售
2011-12-20 10:03:56
氮化镓(GaN)功率集成电路集成与应用
2023-06-19 12:05:19
200℃。
1972年,基于氮化镓材质的 LED 发光二极管才被发明出来(使用掺有镁的氮化镓),。这是里程碑式的历史事件。虽然最初的氮化镓 LED ,它的亮度还不足以商用,但这是人类第一次制备出能够发出蓝
2023-06-15 15:50:54
;这也说明市场对于充电器功率的市场需求及用户使用的范围;随着小米65W的充电器的发布,快速的走进氮化镓快充充电器时代。目前市面上已经量产商用的氮化镓方案主要来自PI和纳微半导体两家供应商。其中PI
2020-03-18 22:34:23
在所有电力电子应用中,功率密度是关键指标之一,这主要由更高能效和更高开关频率驱动。随着基于硅的技术接近其发展极限,设计工程师现在正寻求宽禁带技术如氮化镓(GaN)来提供方案。
2020-10-28 06:01:23
,不是 20W 那种小功率,65W 能充笔记本,还支持双机同时快充。59.9 元氮化镓到底是一个什么概念?选取了市面八款同样规格的 65W 双口氮化镓充电器进行对比,可以看到,业界普遍售价均在百元以上
2022-06-14 11:11:16
是什么氮化镓(GaN)是氮和镓化合物,具体半导体特性,早期应用于发光二极管中,它与常用的硅属于同一元素周期族,硬度高熔点高稳定性强。氮化镓材料是研制微电子器件的重要半导体材料,具有宽带隙、高热导率等特点,应用在充电器方面,主要是集成氮化镓MOS管,可适配小型变压器和高功率器件,充电效率高。二、氮化
2021-09-14 08:35:58
氮化镓功率半导体技术解析基于GaN的高级模块
2021-03-09 06:33:26
氮化镓为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化镓的典型开关频率(65kHz)相比,集成式氮化镓器件提升到的 200kHz。
氮化镓电源 IC 在
2023-06-15 15:35:02
更小:GaNFast™ 功率芯片,可实现比传统硅器件芯片 3 倍的充电速度,其尺寸和重量只有前者的一半,并且在能量节约方面,它最高能节约 40% 的能量。
更快:氮化镓电源 IC 的集成设计使其非常
2023-06-15 15:32:41
满足军方对小型高功率射频器件的需求,WBST 计划在一定程度上依托早期氮化镓在蓝光 LED 照明应用中的成功经验。为了快速跟踪氮化镓在军事系统中的应用,WBST 计划特准计划参与方深耕 MMIC 制造
2017-08-15 17:47:34
波段,随着衬底、外延、芯片和封装技术的不断进步,蓝光激光器的性能在不断提升。 图3、(a)氮化镓/蓝宝石模板和(b)GaN自支撑衬底的位错缺陷对比(图中暗斑为位错缺陷) 在衬底方面,早期的氮化镓
2020-11-27 16:32:53
射频半导体技术的市场格局近年发生了显著变化。 数十年来,横向扩散金属氧化物半导体(LDMOS)技术在商业应用中的射频半导体市场领域起主导作用。如今,这种平衡发生了转变,硅基氮化镓(GaN-on-Si
2018-08-17 09:49:42
GaN如何实现快速开关?氮化镓能否实现高能效、高频电源的设计?
2021-06-17 10:56:45
氮化镓 (GaN) 可为便携式产品提供更小、更轻、更高效的桌面 AC-DC 电源。Keep Tops 氮化镓(GaN)是一种宽带隙半导体材料。 当用于电源时,GaN 比传统硅具有更高的效率、更小
2023-08-21 17:06:18
车、工业电机等领域具有巨大的发展潜力。本分会的主题涵盖大尺寸衬底上横向或纵向氮化镓器件外延结构与生长、氮化镓电力电子器件的新结构与新工艺开发、高效高速氮化镓功率模块设计与制造,氮化镓功率应用与可靠性等。本届
2018-11-05 09:51:35
本帖最后由 kuailesuixing 于 2018-2-28 11:36 编辑
整合意法半导体的制造规模、供货安全保障和电涌耐受能力与MACOM的硅上氮化镓射频功率技术,瞄准主流消费
2018-02-12 15:11:38
,3000多种产品,应用领域覆盖无线、光纤、雷达、有线通信及军事通信等领域,2016年营收达到了5.443亿美元。氮化镓是目前MACOM重点投入的方向,与很多公司的氮化镓采用碳化硅(SiC)做衬底
2017-09-04 15:02:41
多个方面都无法满足要求。在基站端,由于对高功率的需求,氮化镓(GaN)因其在耐高温、优异的高频性能以及低导通损耗、高电流密度的物理特性,是目前最有希望的下一代通信基站功率放大器(PA)芯片材料。5G采用
2017-07-18 16:38:20
测试背景地点:国外某知名品牌半导体企业,深圳氮化镓实验室测试对象:氮化镓半桥快充测试原因:因高压差分探头测试半桥上管Vgs时会炸管,需要对半桥上管控制信号的具体参数进行摸底测试测试探头:麦科信OIP
2023-01-12 09:54:23
)1.1脉冲条件脉冲宽度:120µsec,占空比10%笔记Tc(op)= + 25°CSG36F30S-D基站用晶体管SGN350H-R氮化镓晶体管SGN1214-220H-R氮化镓晶体管
2021-03-30 11:14:59
)1.1脉冲条件脉冲宽度:120µsec,占空比10%笔记Tc(op)= + 25°CSG36F30S-D基站用晶体管SGN350H-R氮化镓晶体管SGN1214-220H-R氮化镓晶体管
2021-03-30 11:24:16
进行的AlGaInP红光垂直结构超高亮度LED芯片制作方法。首先进行MOCVD外延,再以高热导率Si、SiC、金属等材料作为衬底,将LED外延层粘接在其上并制成芯片。其结构为:工艺制作先在高热导率材料
2010-06-09 13:42:08
书籍:《炬丰科技-半导体工艺》文章:氮化镓发展技术编号:JFSJ-21-041作者:炬丰科技网址:http://www.wetsemi.com/index.html 摘要:在单个芯片上集成多个
2021-07-06 09:38:20
解决的问题,以开发适用于 III 族氮化物外延的 GaN 衬底的表面处理。 1. 介绍 单晶体 GaN 衬底是最有希望替代蓝宝石衬底的候选者之一,蓝宝石衬底常用于 III 族氮化物器件,如发光二极管 (LED
2021-07-07 10:26:01
:传统升压CCM PFC对比采用GaN的无桥图腾柱PFC氮化镓提供更低的开关损耗、更快的开关速度、更高的功率密度、更好的热预算、从而提高电动汽车的功率输出和能效,且降低了重量和成本。采购和品质保证演变
2018-07-19 16:30:38
氮化镓(GaN)这种宽带隙材料将引领射频功率器件新发展并将砷化镓(GaAs)和LDMOS(横向扩散金属氧化物半导体)器件变成昨日黄花?看到一些媒体文章、研究论文、分析报告和企业宣传文档后你当然会这样
2019-07-31 07:54:41
氮化镓(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。在一些研发和应用中,传统硅器件在能量转换方面,已经达到了它的物理
2023-06-15 15:47:44
氮化镓(GaN)是一种“宽禁带”(WBG)材料。禁带,是指电子从原子核轨道上脱离出来所需要的能量,氮化镓的禁带宽度为 3.4ev,是硅的 3 倍多,所以说氮化镓拥有宽禁带特性(WBG)。
硅的禁带宽
2023-06-15 15:53:16
处于领先地位。氮化镓功率半导体虽然适用性极高,但依然面临三项社会问题仅从物理特性来看,氮化镓比碳化硅更适合做功率半导体的材料。研究人员还将碳化硅与氮化镓的“Baliga特性指标(与硅相比,硅是1)相比
2023-02-23 15:46:22
氮化镓(GaN)功率芯片,将多种电力电子器件整合到一个氮化镓芯片上,能有效提高产品充电速度、效率、可靠性和成本效益。在很多案例中,氮化镓功率芯片,能令先进的电源转换拓扑结构,从学术概念和理论达到
2023-06-15 14:17:56
通过SMT封装,GaNFast™ 氮化镓功率芯片实现氮化镓器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入、电源输出” (digital in, power out
2023-06-15 16:03:16
两年多前,德州仪器宣布推出首款600V氮化镓(GaN)功率器件。该器件不仅为工程师提供了功率密度和效率,且易于设计,带集成栅极驱动和稳健的器件保护。从那时起,我们就致力于利用这项尖端技术将功率级
2020-10-27 09:28:22
氮化镓南征北战纵横半导体市场多年,无论是吊打碳化硅,还是PK砷化镓。氮化镓凭借其禁带宽度大、击穿电压高、热导率大、电子饱和漂移速度高、抗辐射能力强和良好的化学稳定性等优越性质,确立了其在制备宽波谱
2019-07-31 06:53:03
的 3 倍多,所以说氮化镓拥有宽禁带特性(WBG)。
禁带宽度决定了一种材料所能承受的电场。氮化镓比传统硅材料更大的禁带宽度,使它具有非常细窄的耗尽区,从而可以开发出载流子浓度非常高的器件结构。由于氮化
2023-06-15 15:41:16
=rgb(51, 51, 51) !important]与砷化镓和磷化铟等高频工艺相比,氮化镓器件输出的功率更大;与LDCMOS和碳化硅(SiC)等功率工艺相比,氮化镓的频率特性更好。氮化镓器件的瞬时
2019-07-08 04:20:32
系统能做得越小巧,则电动车的电池续航力越高。这是电动车厂商之所以对碳化硅解决方案趋之若鹜的主要原因。相较于碳化硅在大功率电力电子设备上攻城略地,氮化镓组件则是在小型化电源应用产品领域逐渐扩散,与碳化硅
2021-09-23 15:02:11
客户希望通过原厂FAE尽快找到解决方案,或者将遇到技术挫折归咎为芯片本身设计问题,尽管不排除芯片可能存在不适用的领域,但是大部分时候是应用层面的问题,和芯片没有关系。这种情况对新兴的第三代半导体氮化镓
2023-02-01 14:52:03
材料特性对比展开,通过泰克仪器测试英飞凌GaN器件来进行氮化镓特性的测量与分析。方案配置:示波器MSO5+光隔离探头TIVH08+电压及电流探头+电源和IGBT town 软件第二步:电路设计和PCB
2020-11-18 06:30:50
如何带工程师完整地设计一个高效氮化镓电源,包括元器件选型、电路设计和PCB布线、电路测试和优化技巧、磁性元器件的设计和优化、环路分析和优化、能效分析和优化、EMC优化和整改技巧、可靠性评估和分析。
2021-06-17 06:06:23
我经常感到奇怪,我们的行业为什么不在加快氮化镓 (GaN) 晶体管的部署和采用方面加大合作力度;毕竟,大潮之下,没人能独善其身。每年,我们都看到市场预测的前景不太令人满意。但通过共同努力,我们就能
2022-11-16 06:43:23
如何实现小米氮化镓充电器是一个c to c 的一个充电器拯救者Y7000提供了Type-c的端口,但这个口不可以充电,它是用来转VGA,HDMI,DP之类了,可以外接显示器,拓展坞之类的。要用氮化镓
2021-09-14 06:06:21
性能要优于硅MOSFET,因为在同等导通电阻的情况下,氮化镓 (GaN) 晶体管的终端电容较低,并避免了体二极管所导致的反向恢复损耗。正是由于这些特性,GaN FET可以实现更高的开关频率,从而在保持
2022-11-16 06:23:29
如何设计GaN氮化镓 PD充电器产品?
2021-06-15 06:30:55
通过低内阻和高开关速度,减小了损耗,降低了散热要求。变压器的缩小,以及无需散热措施,氮化镓的应用大幅减小了充电器的体积。锂电池作为现代便携设备的主要能量来源,出货量非常巨大。随着现在手机和平板大功率快充
2023-02-21 16:13:41
(外延)、non-epitaxial(非外延)、SOI (silicon-on-insulator)。外延衬底有一个重掺杂的外延层,这样会得到较低的电阻率,进而预防电路产生latch up效应。但也
2012-01-12 10:47:00
两年多前,德州仪器宣布推出首款600V氮化镓(GaN)功率器件。该器件不仅为工程师提供了功率密度和效率,且易于设计,带集成栅极驱动和稳健的器件保护。从那时起,我们就致力于利用这项尖端技术将功率级
2022-11-10 06:36:09
,氮化镓器件可以在同一衬底上集成多个器件,使得单片式电源系统可以更直接、更高效和更具成本效益地在单芯片上进行设计。集成功率级诸如EPC23102为设计人员提供了一个比基于分立器件方案的体积小35
2023-06-25 14:17:47
。 检测仪器外延材料是双晶X -射线衍射,荧光光谱,卢瑟福背散射光谱通道等。 LED芯片和器件测试设备主要包括光学,电学性能测试仪和频谱分析仪。主要测试参数是正向和反向电压,电流特性,正常的强度,光强
2011-05-03 00:29:27
射频半导体技术的市场格局近年发生了显著变化。数十年来,横向扩散金属氧化物半导体(LDMOS)技术在商业应用中的射频半导体市场领域起主导作用。如今,这种平衡发生了转变,硅基氮化镓(GaN-on-Si)技术成为接替传统LDMOS技术的首选技术。
2019-09-02 07:16:34
,降低LED的光度。学术界希望把硅和氮化镓整合在一起,但是有困难,主要困难是镓与硅之间的大晶格失配。由于很高的缺陷密度,54%的热膨胀系数,外延膜在降温过程中产生裂纹。金属架直接与硅衬底结束时会有化学
2014-01-24 16:08:55
LED衬底目前主要是蓝宝石、碳化硅、硅衬底三种。大多数都采用蓝宝石衬底技术。碳化硅是科锐的专利,只有科锐一家使用,成本等核心数据不得而知。硅衬底成本低,但目前技术还不完善。 从LED成本上来看,用
2012-03-15 10:20:43
纳微集成氮化镓电源解决方案及应用
2023-06-19 11:10:07
氮化镓GaN是什么?
2021-06-16 08:03:56
candence中的Spice模型可以修改器件最基本的物理方程吗?然后提取参数想基于candence model editor进行氮化镓器件的建模,有可能实现吗?求教ICCAP软件呢?
2019-11-29 16:04:02
虽然低电压氮化镓功率芯片的学术研究,始于 2009 年左右的香港科技大学,但强大的高压氮化镓功率芯片平台的量产,则是由成立于 2014 年的纳微半导体最早进行研发的。纳微半导体的三位联合创始人
2023-06-15 15:28:08
低,并且可以利用低电流、高击穿电压特性来实现非常高的效率。另一方面,要求低阻抗和高电流的器件应用将青睐氮化镓,主要是因为其载流子迁移率和载流子密度较高。 那么,氧化镓有什么缺点?这种材料的致命弱点
2023-02-27 15:46:36
各位大神,目前国内卖铟镓砷红外探测器的有不少,知道铟镓砷等III-V族化合物外延片都是哪些公司生产的吗,坐等答案
2013-06-04 17:22:07
就可以实现。正是由于我们推出了LMG3410—一个用开创性的氮化镓 (GaN) 技术搭建的高压、集成驱动器解决方案,相对于传统的、基于硅材料的技术,创新人员将能够创造出更加小巧、效率更高、性能更佳
2022-11-16 07:42:26
就可以实现。正是由于我们推出了LMG3410—一个用开创性的氮化镓 (GaN) 技术搭建的高压、集成驱动器解决方案,相对于传统的、基于硅材料的技术,创新人员将能够创造出更加小巧、效率更高、性能更佳
2018-08-30 15:05:50
用于化合物半导体衬底:GaN氮化镓 、GaAs砷化镓 、GaP磷化鎵外延: MBE, LPE ,VPE
2022-01-17 13:46:39
LED 外延片--衬底材料衬底材料是半导体照明产业技术发展的基石。不同的衬底材料,需要不同的外延生长技术、芯片加工技术和器件封装技术,衬底材料决定了半导体照明技
2010-12-21 16:39:29
0 利用外延片焊接技术,把Si(111)衬底上生长的GaN蓝光LED外延材料压焊到新的Si衬底上.在去除原Si衬底和外延材料中缓冲层后,制备了垂直结构GaN蓝光LED.与外延材料未转移的同侧结构相比,转移
2011-04-14 13:29:34
29 本内容介绍了LED外延片基础知识,LED外延片--衬底材料,评价衬底材料必须综合考虑的因素
2012-01-06 15:29:54
2743 LED外延片的生产制作过程是非常复杂,本文详细介绍了LED外延片的相关内容,包括产品介绍、衬底材料。
2012-12-05 10:37:14
2683 LED外延片其实是衬底材料作用的,也就是说在使用一些照明产业当中,这种材料被广泛的运用于芯片加工。导体外延片的存在是与发光产业相连接的,也就是说在进行LED外延片的选择方上,要与外形的晶体相符合,另外也与其他的客观因素有着相当大的关系,最主要的是与稳定性和导热性有着密切联系。
2020-07-17 16:29:59
5089 据报道,武汉大学的研究团队近期公布了采用PSSA(patterned sapphire with silica array)衬底来降低氮化镓接合边界失配问题的方法,提出PSSA衬底可提高铟氮化镓、氮化镓(InGaN/GaN)倒装芯片可见光LED的效率。
2020-12-09 17:00:23
793 虽然在商用化学气相沉积设备中可以在一次运行中实现多片4H-SiC衬底的同质外延生长,但是必须将晶片装载到可旋转的大型基座上,这导致基座的直径随着数量或者外延晶片总面积的增加而增加。
2020-12-26 03:52:29
492 本文提供了用于蚀刻膜的方法和设备。一个方面涉及一种在衬底上蚀刻氮化硅的方法,该方法包括:(a)将氟化气体引入等离子体发生器并点燃等离子体以a形成含氟蚀刻溶液;(b)从硅源向等离子体提供硅;以及
2022-04-24 14:58:51
979 ![](https://file.elecfans.com//web2/M00/3E/F0/poYBAGJk9SuAS8LJAABOAAdaxtg906.jpg)
氮化镓外延片生长工艺较为复杂,多采用两步生长法,需经过高温烘烤、缓冲层生长、重结晶、退火处理等流程。两步生长法通过控制温度,以防止氮化镓外延片因晶格失配或应力而产生翘曲,为目前全球氮化镓外延片主流制备方法。
2023-02-05 14:50:00
4345 氮化镓外延片指采用外延方法,使单晶衬底上生长一层或多层氮化镓薄膜而制成的产品。近年来,在国家政策支持下,我国氮化镓外延片行业规模不断扩大。
2023-02-06 17:14:35
3012 通常是指的在蓝宝石衬底上用外延的方法(MOCVD)生长的GaN。外延片上面一般都已经做有u-GaN,n-GaN,量子阱,p-GaN。
2023-02-12 14:31:25
2103 由于同质外延结构带来的晶格匹配和热匹配,自支撑氮化镓衬底在提升氮化镓基器件性能方面有着巨大潜力,如发光二极管,激光二极管,功率器件和射频器件等。相比异质衬底外延, 基于自支撑氮化镓晶圆片的同质外延可能是大多氮化镓基器件的绝佳选择。
2023-02-14 09:18:10
580 ![](https://file.elecfans.com//web2/M00/91/0A/pYYBAGPq4VSAC4WsAAMIskfZj9w615.png)
氮化镓外延片是一种由氮化镓制成的薄片,它可以用于制造电子元件、电子器件和电子零件。氮化镓外延片具有良好的热稳定性和电磁屏蔽性,可以用于制造高精度的零件和组件,如电路板、电子控制器、电子模块、电子接口、电子连接器等。
2023-02-14 14:05:41
3722 硅基氮化镓衬底是一种新型的衬底,它可以提高衬底的热稳定性和抗拉强度,从而提高衬底的性能。它主要用于电子、光学、电力、航空航天等领域。
2023-02-14 14:36:08
1130 氮化镓外延片工艺是一种用于制备氮化镓外延片的工艺,主要包括表面清洗、氮化处理、清洗处理、干燥处理和检测处理等步骤。
2023-02-20 15:50:32
10570 从保障外延片品质入手,提升Micro LED生产效率,降低生产成本外,应用更大尺寸的外延片也是Micro LED成本考量的关键。传统的LED行业普遍在4英寸,而Micro LED的生产工艺会扩大到6乃至8英寸,更大的衬底尺寸可以更好控制Micro LED的成本。
2023-05-10 09:50:04
543 外延层是在晶圆的基础上,经过外延工艺生长出特定单晶薄膜,衬底晶圆和外延薄膜合称外延片。其中在导电型碳化硅衬底上生长碳化硅外延层制得碳化硅同质外延片,可进一步制成肖特基二极管、MOSFET、 IGBT 等功率器件,其中应用最多的是4H-SiC 型衬底。
2023-05-31 09:27:09
2828 ![](https://file1.elecfans.com/web2/M00/88/E5/wKgaomR2pWSANdatAABHwfHqOB0158.png)
一种是通过生长碳化硅同质外延,下游用于新能源汽车、光伏、工控、轨交等功率领域的导电型衬底,外延层上制造各类功率器件; 另一种是通过生长氮化镓异质外延,下游应用于5G通讯、国防等射频领域的半绝缘型衬底,主要用于制造氮化镓射频器件。
2023-06-03 10:28:35
924 ![](https://file1.elecfans.com/web2/M00/89/28/wKgZomR6ph6AcwAeAAAhNzjN4_A819.png)
氮化镓衬底是一种用于制造氮化镓(GaN)基础半导体器件的基板材料。GaN是一种III-V族化合物半导体材料,具有优异的电子特性和高频特性,适用于高功率、高频率和高温应用。
使用氮化镓衬底可以在上面
2023-08-22 15:17:31
2379 近日,晶能光电发布12英寸硅衬底InGaN基红、绿、蓝全系列三基色Micro LED外延技术成果。
2023-09-01 14:07:44
738 氮化镓功率器件与硅基功率器件的特性不同本质是外延结构的不同,本文通过深入对比氮化镓HEMT与硅基MOS管的外延结构
2023-09-19 14:50:34
2704 ![](https://file1.elecfans.com/web2/M00/A3/BD/wKgZomUJRY6Af3-zAAAvNxEJU4c964.png)
半导体器件为什么要有衬底及外延层之分呢?外延层的存在有何意义? 半导体器件往往由衬底和外延层组成,这两个部分在制造过程中起着重要的作用,并且在器件的性能和功能方面具有重要意义。 首先,衬底是半导体
2023-11-22 17:21:28
1514 当前,人们正在致力于研发氮化镓和其他III族氮化物的高功率、高频率器件。
2024-01-11 09:50:46
400 ![](https://file1.elecfans.com/web2/M00/BC/0C/wKgZomWfSd2AM-faAAAPRC3aO2w175.jpg)
国内主要的碳化硅衬底供应商包括天岳先进、天科合达、烁科晶体、东尼电子和河北同光等。三安光电走IDM路线,覆盖衬底、外延、芯片、封装等环节。部分厂商还自研单晶炉设备及外延片等产品。
2024-01-12 11:37:03
864 ![](https://file1.elecfans.com/web2/M00/BC/41/wKgZomWgtD-AVMNYAABcoGHFHBw041.png)
衬底(substrate)是由半导体单晶材料制造而成的晶圆片,衬底可以直接进入晶圆制造环节生产半导体器件,也可以进行外延工艺加工生产外延片。
2024-03-08 11:07:41
161 ![](https://file1.elecfans.com/web2/M00/C3/48/wKgZomXqggaATgUPAAAOr4Lk1e0165.jpg)
评论