本文要点
模拟IC具有广泛的应用,包括控制、数据转换、电源、通信、仪器和物理世界接口,以及计算。
模拟IC设计需要考虑噪声、线性度、增益、供电电压、电压摆幅、速度、输入和输出阻抗以及功率耗散等多个指标。
本文摘要
本文介绍了模拟集成电路(IC)设计的基础知识和应用领域。模拟信号与数字信号的区别在于其连续性和无限范围的值。模拟IC是产生或放大模拟信号的集成电路。模拟IC在控制、数据转换、电源、通信、仪器和物理世界接口,以及计算等领域有广泛的应用。模拟IC设计需要考虑噪声、线性度、增益、供电电压、电压摆幅、速度、输入和输出阻抗以及功率耗散等多个指标。模拟IC设计的挑战在于需要手动设计,并且受到晶体管尺寸缩小带来的高阶寄生效应的影响。
有兴趣了解模拟集成电路吗?本文探讨了这些重要但未被充分重视的 IC 的设计指标和应用。
集成电路 (IC) 自 20 世纪 50 年代末推出以来一直统治着电子行业。所有迹象都表明这些小黑匣子将继续主导市场,尤其是模拟 IC 设计多年来变得越来越重要。
尽管如此,当大多数人想到 IC 时,他们会想到计算机处理器或微控制器等数字电路。这篇文章应该有助于纠正这个问题。我们将回顾模拟 IC 的性质,回顾这些电路的一些应用领域,最后研究设计它们的独特要求和挑战。
什么是模拟IC?
在我们开始讨论模拟 IC 设计之前,我们需要定义“模拟”。
模拟信号在时间上是连续的并且具有无限范围的值。自然界中发现的所有信号,从声波到脑电波,都是模拟信号。另一方面,数字信号随着时间的推移是离散的,并且在任何给定时间只能是一定数量的状态之一。图 1 提供了两种信号类型的比较。
图 1.模拟(顶部)与数字(底部)信号。图片由Monolithic Power Systems提供
模拟 IC 是产生或放大模拟信号而不是数字信号的集成电路。
模拟IC的应用
现在我们知道什么是模拟 IC,图 2 显示了它们的使用领域。
如您所见,模拟 IC 具有多种应用。让我们按类别来看看它们。
控制
为了控制电路操作,模拟电路根据传感器值创建信号。模拟电路广泛使用一种称为反馈的技术,其中电路输出值在电路内反馈,以根据其自身值调整输出。
数据转换
某些应用(例如播放或录制音频)需要将数字信号与模拟信号相互转换。用于实现此目的的电路必须包含模拟电路以测量模拟信号。
假设您想在手机上播放一些音乐。要生成通过手机扬声器播放的音频,代表声音的数字数据需要转换为实际的声波。由于声波是模拟信号,这意味着信号从数字域切换到模拟域。
这是通过称为数模转换器(DAC)的电路来执行的。相反,录制音频需要将模拟信号(正在录制的音频)转换为数字信号,因此需要使用模数转换器 (ADC)。DAC 和 ADC 都需要特殊的数字和模拟电路,以实现高性能,同时保持合理的功耗。
力量
所有电路都需要功率调节,以确保它们接收正确的电压和电流以实现正常运行。电源可能会产生噪音或出现故障,这可能会妨碍甚至破坏电气系统。这就是为什么有必要包含电力电子设备,通过提供自动关闭和/或与电源隔离等安全功能,防止电路受到损害。
这些电源调节电路可以将墙壁插座的交流电转换为低压直流电。它们还可以执行直流到直流转换以产生不同值的电压。此外,它们还可以利用能量收集将太阳能、射频或辐射能转换为直流电源电压。
沟通
虽然通过电缆传输的数据通常被认为是数字的,但实际上它本质上是模拟的。模拟电路提供了通过电缆发送数据的驱动能力,并且具有足够的电量以便在另一侧可读。接收端还必须具有传感放大器,可以从发送器读取数据并将其转换回满量程数字信号。
模拟电路的数据传输应用并不限于有线通信——无线数据传输中使用的收发器包含许多模拟电路。这些功能用于生成和测量电磁波,使收发器能够远距离传输所需的数据,并将射频信号转换为全量程数字信号。
仪器仪表和物理世界接口
为了感知现实世界的信号或生成必须与现实世界交互的信号,有必要产生连续时间的信号。根据定义,这意味着使用模拟电路。
精密测试和测量设备需要高性能模拟电路,能够将传感器输出信号高精度地转换为可读电压。这使得电压可以转换为数字信号。模拟 IC 用作各种仪器的组件,从检测输入电压和电流的数字万用表到检测感应电容器值变化的加速度计。
计算
数字电路仍然统治着这个领域,但模拟电路也可以执行高效的计算。具有最高计算性能的模拟电路是你的大脑,而执行模拟计算的电子电路通常试图复制人脑的操作。这是目前研究的一个大课题。
模拟 IC 设计要求
当工程师设计数字电路时,他们主要关心两个设计特性:功耗和处理速度。这两个变量通常相互矛盾——设计人员必须针对其特定应用在两者之间找到最佳平衡。对于模拟电路设计人员来说,还有更多的考虑因素需要考虑,正如我们将在本节中看到的。
图 3 中的图通常称为模拟设计八边形,说明了模拟设计人员在创建规范或评估已设计电路的性能时必须考虑的指标。
图 3.模拟设计八边形。图片由All About Circuits提供
由于功耗和速度是模拟电路和数字电路之间的共享指标,因此我们不会在这里讨论它们。然而,我们将检查设计八边形上的其他点。
噪音
噪声——无论是由电路产生的,还是来自自然界的、无法消除的不需要的信号——是模拟电路的一个大问题。模拟电路组件会产生不可忽略的噪声值,这些噪声值会增加到感兴趣的真实信号中,从而损害信号完整性。
由于其高速开关,数字电路可以提供足够大的噪声,足以破坏模拟电路信号输出。然而,模拟电路的设计可以“滤除”不需要的噪声。设计师应该注意这一点。
线性度和增益
模拟电路主要由放大器组成,包括我们都知道和喜爱的运算放大器。假设理想的运算放大器具有无限增益,为了使运算放大器的运行尽可能接近理想状态,放大器增益(输出与输入之比)必须最大化。
同时,线性度定义为电路的传递函数在整个工作范围内尽可能保持线性的能力。完美线性电路在输入范围底部和顶部的工作方式相同。这是所希望的,因为它允许对数据进行简单的处理。如果电路是非线性的,则需要进行复杂的后处理,否则将导致读取错误的数据。
电源电压和电压摆幅
模拟电路设计人员还必须确保电源电压具有足够的值来满足所需的输出电压摆幅。该电路还必须能够感测并产生规定级别的输入和输出电压。电源电压可以实现这一点。
输入/输出阻抗
输入和输出阻抗在数据传输应用中尤其重要。通信线路必须具有匹配的阻抗,以最大限度地减少反射信号,否则可能会破坏传输的数据信号。
模拟 IC 设计的挑战
由于必须考虑如此多的指标,模拟电路仍然主要是手工创建的。数字电路设计是高度自动化的,利用硬件描述语言可以从代码生成物理电路布局。
此外,虽然晶体管尺寸根据摩尔定律不断减小,但模拟电路无法像数字电路一样充分利用这些先进节点。今天的数字电路采用 3 纳米工艺制造,并且可能会变得更小。相比之下,模拟电路目前设计在 65 nm 至 28 nm 范围内。
晶体管的缩小会导致高阶寄生效应,这对模拟电路来说是一个困扰,尽管它们不会极大地影响数字性能。因此,模拟IC从一个技术节点到另一个技术节点需要更多的时间。
编辑:黄飞
评论
查看更多