美高森美公司(Microsemi Corporation) 推出采用碳化硅(SiC)材料和技术的全新1200 V肖特基二极管系列
2012-11-22 14:09:061242 在很宽的范围内实现对器件制造所需的p型和n型的控制。因此,SiC被认为是有望超越硅极限的功率器件材料。SiC具有多种多型(晶体多晶型),并且每种多型显示不同的物理特性。对于功率器件,4H-SiC被认为是理想的,其单晶4英寸到6英寸之间的晶圆目前已量产。
2022-11-22 09:59:261373 碳化硅(SiC)材料被认为已经彻底改变了电力电子行业。其宽带隙、高温稳定性和高导热性等特性将为SiC基功率器件带来一系列优势。近年来,随着新能源汽车企业将SiC基MOSFET模块应用于高端汽车
2023-12-20 13:46:36834 提升,都需要SiC器件的深度参与。 但SiC器件的生产流程和生产工艺其实门槛还挺高的,一般来说,SiC生产流程主要涉及以下五个过程: 一是单晶生长,以高纯硅粉和高纯碳粉作为原材料形成SiC晶体; 二是衬底环节,SiC晶体经过切割、研磨、抛光、
2022-03-14 07:34:003491 新的SiC晶体制备技术。 成本低质量还高,液相法会是未来SiC 降本的核心? 目前SiC单晶制备主流都是通过物理气相传输PVT法生长,核心的步骤包括将SiC粉料进行高温加热,加热后SiC粉料升华成气体,气体移动到籽晶表面缓慢生长成晶体。 但
2023-07-12 09:00:19829 3D图像的主流技术有哪几种?Bora传感器的功能亮点是什么?
2021-05-28 06:37:34
晶体生长和器件加工技术的额外动力。在20世纪80年代后期,世界各地正在进行大量努力,以提高SiC衬底和六方SiC外延的质量 - 垂直SiC功率器件所需 - 从日本的京都大学和AIST等机构到俄罗斯
2023-02-27 13:48:12
从本文开始,将逐一进行SiC-MOSFET与其他功率晶体管的比较。本文将介绍与Si-MOSFET的区别。尚未使用过SiC-MOSFET的人,与其详细研究每个参数,不如先弄清楚驱动方法等
2018-11-30 11:34:24
SiC-DMOS的特性现状是用椭圆围起来的范围。通过未来的发展,性能有望进一步提升。从下一篇开始,将单独介绍与SiC-MOSFET的比较。关键要点:・功率晶体管的特征因材料和结构而异。・在特性方面各有优缺点,但SiC-MOSFET在整体上具有优异的特性。< 相关产品信息 >MOSFETSiC-DMOS
2018-11-30 11:35:30
1. 器件结构和特征 Si材料中越是高耐压器件,单位面积的导通电阻也越大(以耐压值的约2~2.5次方的比例增加),因此600V以上的电压中主要采用IGBT(绝缘栅极双极型晶体管)。 IGBT
2023-02-07 16:40:49
1. 器件结构和特征Si材料中越是高耐压器件,单位面积的导通电阻也越大(以耐压值的约2~2.5次方的比例增加),因此600V以上的电压中主要采用IGBT(绝缘栅极双极型晶体管)。IGBT通过
2019-04-09 04:58:00
作的。全桥式逆变器部分使用了3种晶体管(Si IGBT、第二代SiC-MOSFET、上一章介绍的第三代沟槽结构SiC-MOSFET),组成相同尺寸的移相DCDC转换器,就是用来比较各产品效率的演示机
2018-11-27 16:38:39
-SBD的发展,整理一下当前实际上供应的SiC-SBD。电源IC等通过不同的架构和配置功能比较容易打造出品牌特色,而二极管和晶体管等分立元器件,功能本身是一样的,因此是直接比较几乎共通的特性项目来选型的。此时
2018-11-30 11:51:17
WInSiC4AP的主要目标是什么?SiC技术在WInSiC4AP中有什么应用?
2021-07-15 07:18:06
在未来几年投入使用SiC技术来应对汽车电子技术挑战是ECSEL JU 的WInSiC4AP项目所要达到的目标之一。ECSEL JU和ESI协同为该项目提供资金支持,实现具有重大经济和社会影响的优势互补的研发活动。
2019-07-30 06:18:11
工作等SiC的特征所带来的优势。通过与Si的比较来进行介绍。”低阻值”可以单纯解释为减少损耗,但阻值相同的话就可以缩小元件(芯片)的面积。应对大功率时,有时会使用将多个晶体管和二极管一体化的功率模块
2018-11-29 14:35:23
1. 器件结构和特征Si材料中越是高耐压器件,单位面积的导通电阻也越大(以耐压值的约2~2.5次方的比例增加),因此600V以上的电压中主要采用IGBT(绝缘栅极双极型晶体管)。IGBT通过
2019-05-07 06:21:55
Transistor : 绝缘栅极双极型晶体管)等少数载流子器件(双极型器件),但是却存在开关损耗大 的问题,其结果是由此产生的发热会限制IGBT的高频驱动。SiC材料却能够以高频器件结构的多数
2019-07-23 04:20:21
1. SiC模块的特征大电流功率模块中广泛采用的主要是由Si材料的IGBT和FRD组成的IGBT模块。ROHM在世界上首次开始出售搭载了SiC-MOSFET和SiC-SBD的功率模块。由IGBT的尾
2019-05-06 09:15:52
具有成本效益的大功率高温半导体器件是应用于微电子技术的基本元件。SiC是宽带隙半导体材料,与Si相比,它在应用中具有诸多优势。由于具有较宽的带隙,SiC器件的工作温度可高达600℃,而Si器件
2018-09-11 16:12:04
:快充和换电。换电是蔚来汽车主推的,而大多数车企主导的是快充方式。快充分为大电流和高电压两种。目前,电动汽车快充主流产品,即传统硅基IGBT功率器件,正在逼近材料特性极限,而下一代半导体材料SiC
2022-12-27 15:05:47
Sic mesfet工艺技术研究与器件研究针对SiC 衬底缺陷密度相对较高的问题,研究了消除或减弱其影响的工艺技术并进行了器件研制。通过优化刻蚀条件获得了粗糙度为2?07 nm的刻蚀表面;牺牲氧化
2009-10-06 09:48:48
马上即将毕业了,就自己在学校做的项目中包含有几种主流数控系统需要进行数据采集,总结一下之前的一些经验和开发工作,也希望后面再做相关技术研究的时候少踩点坑,同时也算是一个阶段的总结吧,毕竟马上要从事一
2021-07-02 06:38:32
半导体的关键特性是能带隙,能带动电子进入导通状态所需的能量。宽带隙(WBG)可以实现更高功率,更高开关速度的晶体管,WBG器件包括氮化镓(GaN)和碳化硅(SiC),以及其他半导体。 GaN和SiC
2022-08-12 09:42:07
基于SiC HEMT技术的GaN输出功率> 250W预匹配的输入阻抗极高的效率-高达80%在100ms,10%占空比脉冲条件下进行了100%RF测试IGN0450M250功率晶体
2021-04-01 10:35:32
的宽带隙使其可以用于蓝色/紫外线发光二极管和激光二极管,并且由于其固有载流子浓度低,可以在非常高的温度下工作。 氧化锌是一种具有纤锌矿晶体结构的直接宽带隙材料,可用于气体传感器、透明电极、液晶显示
2021-10-14 11:48:31
重复排列成非常固定的结构,这种材料称为晶体。原子没有固定的周期性排列的材料被称为非晶体或无定形。塑料就是无定形材料的例子。晶体生长半导体晶圆是从大块的半导体材料切割而来的。这种半导体材料,或称为硅锭
2018-07-04 16:46:41
应用领域,SiC和GaN形成竞争。随着碳化硅(SiC)、氮化镓(GaN)等新材料陆续应用在二极管、场效晶体管(MOSFET)等组件上,电力电子产业的技术大革命已揭开序幕。这些新组件虽然在成本上仍比传统硅
2021-09-23 15:02:11
重要考量是SiC二极管/ MOSFET的设计。SiC能够应对高场应力,因此很多设计都是为了应对这些高应力条件。例如,终端结构需要很多心思,才能确保器件的耐用性。利用宽带隙(WBG)材料的独特特性,SiC技术
2018-10-29 08:51:19
改变,从而影响锡须的生长速度。本文讨论在电子设备工程联合委员会(JEDEC)推荐的三个测试条件下进行的测试。在一定程度上,这些测试代表一些常见的实地应用条件。在测试结果的基础上研制减轻锡须生长的技术
2015-03-13 13:36:02
如何去判别晶体管材料与极性?如何去检测晶体管的性能?怎样去检测特殊晶体管?
2021-05-13 07:23:57
随着雷达应用需求的不断扩展,作为关键部件的天线,尤其是主流的有源相控阵天线的发展日新月异。为适应现代雷达的高设计指标要求,新的解决方案、设计理论、材料以及微波器件正不断涌现,天线微波领域面临着
2019-07-17 06:43:32
的机遇和挑战等方面,为从事宽禁带半导体材料、电力电子器件、封装和电力电子应用的专业人士和研究生提供了难得的学习和交流机会。诚挚欢迎大家的参与。1、活动主题宽禁带半导体(SiC、GaN)电力电子技术应用2
2017-07-11 14:06:55
1. SiC模块的特征大电流功率模块中广泛采用的主要是由Si材料的IGBT和FRD组成的IGBT模块。ROHM在世界上首次开始出售搭载了SiC-MOSFET和SiC-SBD的功率模块。由IGBT的尾
2019-03-12 03:43:18
`①未来发展导向之Sic功率元器件“功率元器件”或“功率半导体”已逐渐步入大众生活,以大功率低损耗为目的二极管和晶体管等分立(分立半导体)元器件备受瞩目。在科技发展道路上的,“小型化”和“节能化
2017-07-22 14:12:43
,避免故障。表1总结了三种晶体管类型参数以及GaN、Si和SiC的物理材料。对于Si SJ MOS,选择了最新的具有本征快速体二极管的Si基MOSFET。GaN和SiC是最新一代的宽带隙晶体管,更适合
2023-02-27 09:37:29
应用看,未来非常广泛且前景被看好。与圈内某知名公司了解到,一旦国内品牌谁先成功掌握这种技术,那它就会呈暴发式的增加。在Si材料已经接近理论性能极限的今天,SiC功率器件因其高耐压、低损耗、高效率等特性
2019-09-17 09:05:05
1. 器件结构和特征SiC能够以高频器件结构的SBD(肖特基势垒二极管)结构得到600V以上的高耐压二极管(Si的SBD最高耐压为200V左右)。因此,如果用SiC-SBD替换现在主流产品快速PN结
2019-05-07 06:21:51
电容触摸感应技术已经成为汽车设计中的主流技术
2021-05-12 07:03:29
地壳表面找到。能够再生:石英晶体可以进行人工合成。石英原矿在高压釜中经过加工,生长成高纯度和完美的石英晶体条。重复处理技术:先进的制造技术及严格的误差控制确保极高的精度。硬而不脆:这种材料的独特性在于
2008-11-24 16:20:40
更新换代,SiC并不例外 新一代半导体开关技术出现得越来越快。下一代宽带隙技术仍处于初级阶段,有望进一步改善许多应用领域的效率、尺寸和成本。虽然,随着碳化硅技术的进步,未来还将面临挑战,例如,晶圆
2023-02-27 14:28:47
的一种最具有优势的半导体材料.并且具有远大于Si材料的功率器件品质因子。SiC功率器件的研发始于20世纪90年代.目前已成为新型功率半导体器件研究开发的主流。2004年SiC功率MOSFET不仅在高
2017-06-16 10:37:22
纬湃科技选择罗姆为其SiC技术的首选供应商
2021-03-11 08:01:56
化镓(GaAs)、氮化镓(GaN)和碳化硅(SiC)为代表的化合物半导体材料和以石墨烯为代表的碳基材料。了解每种新型材料及其应用在技术成熟度曲线的位置,对我们研发、投资切入有着极其重要的意义。作为
2017-02-22 14:59:09
行业内主流的识别技术有哪几种?
2021-05-17 06:20:42
,采用特别是模塑或三维立体封装技术,开发新一代功率模组,如图6所示。图6 : 新一代功率模组(here 3D)考量到SiC是一种相对较新的材料,SiC元件的工作温度和输出功率高于矽,有必要在专案内开发
2019-06-27 04:20:26
NaCLO3溶液晶体生长是我国载人航天工程中的一项重要空间科学实验项目,为了确保NaCLO3晶体生长实验在空间微重力环境下的成功进行,必须进行充分、有效的地基模拟实验,包括
2009-12-23 14:09:3212 为了获得优质的碲锌镉单晶体,采用工控机和组态王6?53开发了一种晶体生长参数的检测优化系统.实现对晶体生长炉内各个温区的温度、籽晶杆的旋转方式及各个时段的旋转速
2010-03-01 16:30:1616 SiC,SiC是什么意思
SiC是一种Ⅳ-Ⅳ族化合物半导体材料,具有多种同素异构类型。其典型结构可分为两类:一类是闪锌矿结构的立方SiC晶型,称为3C
2010-03-04 13:25:266541 基于嵌入式Linux的晶体生长控径系统的研究
1 引言
随着单晶硅片制造向大直径化发展,直拉法单晶硅生长技术在单晶硅制造中逐渐显出其主导地位。为使
2010-03-12 11:14:29435 分析了SiC半导体材料的结构类型和基本特性, 介绍了SiC 单晶材料的生长技术及器件工艺技术, 简要讨论了SiC 器件的主要应用领域和优势
2011-11-01 17:23:2081 运用图形化编程语言对采集的单晶硅生长信息图进行图像处理,对部分释热光环进行圆弧拟合,由拟合出的圆进行晶体生长直径检测。实验表明,该设计能够很好地完成圆弧拟合,实现对单晶
2011-11-03 15:42:2621 GT Advanced Technologies Inc.日前推出全新的 DSS450 MonoCast 晶体生长系统。
2012-02-05 10:44:22588 一种新型4H_SiC双极结型晶体管的研究_仇坤
2017-01-07 21:45:572 SiC作为宽禁带半导体材料,与Si相比具有击穿场强高、导热系数高、载流能力大、开关速度快、可高温工作等优点,适用于高压、高温、高频等领域的应用。
2018-05-17 09:27:124668 近日,在中国电子科技集团公司第二研究所(简称中国电科二所)生产大楼内,100台碳化硅(SiC)单晶生长设备正在高速运行,SiC单晶就在这100台设备里“奋力”生长。
2018-06-07 14:49:007568 SiC(碳化硅)是一种由Si(硅)和C(碳)构成的化合物半导体材料。SiC临界击穿场强是Si的10倍,带隙是Si的3倍,热导率是Si的3倍,所以被认为是一种超越Si极限的功率器件材料。SiC中存在
2018-07-15 11:05:419257 沙子转变为半导体级硅的制备,再将其转变成晶体和晶圆,以及生产抛光晶圆要求的工艺步骤。这其中包括了用于制造操作晶圆的不同类型的描述。生长450mm直径的晶体和450mm晶圆的制备存在的挑战性。
2018-07-19 10:09:3113334 本文档的主要内容详细介绍的是半导体制造教程之工艺晶体的生长资料概述
一、衬底材料的类型1.元素半导体 Si、Ge…。2. 化合物半导体 GaAs、SiC 、GaN…
2018-11-19 08:00:0040 瑞典的研究人员在碳化硅(SiC)上生长出更薄的IIIA族氮化物结构,以期实现高功率和高频薄层高电子迁移率晶体管(T-HEMT)和其他器件。
2019-02-02 17:29:003593 本发明提供一种 PVT 法生长 SiC 晶体的籽晶固定方法,包括,将所述籽晶晶片边缘通过粘结剂粘接于具有一定宽度以能可靠粘结固定所述籽晶的环形连接件的一端面 ;将所述连接件套装在端部周边边缘开槽
2020-04-09 08:00:0017 本实用新型公开一种适用于 PVT 法生长 SiC 晶体系统的测温结构,所述系统具有用坩埚围成的晶体生长用晶体生长室,配置于生长室室内顶部的籽晶托,和在所述晶体生长室外围的保温层 ;所述的测温结构包括
2020-04-09 08:00:003 虽然在商用化学气相沉积设备中可以在一次运行中实现多片4H-SiC衬底的同质外延生长,但是必须将晶片装载到可旋转的大型基座上,这导致基座的直径随着数量或者外延晶片总面积的增加而增加。
2020-12-26 03:52:29492 碳化硅(SiC)在设计大功率电子器件方面优于传统硅,开发者们对SiC材料的物理特性还有性能有较多的认识,这种高性能化合物半导体的被广泛采用,但在应用中如何控制晶体的缺陷密度仍是一个挑战。
2022-04-16 17:07:542689 基于以日本、美国和欧洲为中心对生长、材料特性和器件加工技术的广泛研究,SiC SBD和金属氧化物半导体场效应晶体管(MOSFET)的生产已经开始。然而,SiC功率MOSFET的性能仍远未达到材料的全部潜力。
2022-11-02 15:04:281551 这次,合作团队使用 Air Water 开发的 3C-SiC 晶体,评估了热导率并进行了原子级分析。具体而言,首先,在硅(Si)基板上形成厚度100μm的3C-SiC。之后,去除 Si 以制造 3C-SiC 自支撑衬底。
2022-12-21 10:19:271802 纯SiC晶体是通过Lely升华技术生长的。晶体主要是6H-SiC,但包括其它多型体。1978年,Tairov和Tsvetkov发明了一种可复制的SiC晶块生长方法。
2022-12-28 11:44:13717 本实验通过以自主研发的由c轴偏向<11-20>方向4°的6英寸4H-SiC衬底作为籽晶和扩径生长的起始点,采用物理气相传输(physical vapor transport, PVT)法进行扩径生长获得直径放大的SiC单晶。
2023-01-17 14:10:101194 介绍了SIC碳化硅材料的特性,包括材料结构,晶体制备,晶体生长,器件制造工艺细节等等。。。欢迎大家一起学习
2023-03-31 15:01:4817 碳化硅单晶衬底材料(Silicon Carbide Single Crystal Substrate Materials,以下简称SiC衬底)也是晶体材料的一种,属于宽禁带半导体材料,具有耐高压、耐高温、高频、低损耗等优势,是制备大功率电力电子器件以及微波射频器件的基础性材料。
2023-05-18 09:54:341934 由于GaN在高温生长时N的离解压很高,很难得到大尺寸的GaN单晶材料,因此,为了实现低成本、高效、高功率的GaN HEMTs器件,研究人员经过几十年的不断研究,并不断尝试利用不同的外延生长方法在Si
2023-06-10 09:43:44682 8.2.10.34H-SiC反型层迁移率的实验结果8.2.10反型层电子迁移率8.2金属-氧化物-半导体场效应晶体管(MOSFET)第8章单极型功率开关器件《碳化硅技术基本原理——生长、表征、器件
2022-03-05 10:43:22266 6.3.7迁移率限制因素6.3氧化及氧化硅/SiC界面特性第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:6.3.6不同晶面上的氧化硅/SiC界面特性∈《碳化硅技术
2022-01-21 09:37:00736 6.3.6不同晶面上的氧化硅/SiC界面特性6.3氧化及氧化硅/SiC界面特性第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:6.3.5.5界面的不稳定性∈《碳化硅技术
2022-01-21 09:35:56706 8.2.11氧化层可靠性8.2金属-氧化物-半导体场效应晶体管(MOSFET)第8章单极型功率开关器件《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:8.2.10.34H-SiC
2022-03-07 09:51:01285 6.5总结第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:6.4.2.3p型SiC的欧姆接触∈《碳化硅技术基本原理——生长、表征、器件和应用》6.4.2.2n型SiC
2022-01-27 09:16:44861 8.2.12MOSFET瞬态响应8.2金属-氧化物-半导体场效应晶体管(MOSFET)第8章单极型功率开关器件《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:8.2.11氧化层可靠性
2022-03-07 09:38:20455 7.1.1阻断电压7.1SiC功率开关器件简介第7章单极型和双极型功率二极管《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:6.5总结∈《碳化硅技术基本原理——生长、表征、器件
2022-02-07 16:12:08568 和载流子浓度2.2.2光吸收系数和折射率2.2.1能带结构2.1晶体结构第3章碳化硅晶体生长3.9总结3.8切片及抛光3.7化学气相淀积法生长3C-SiC晶圆3.6溶液
2022-05-09 17:19:452152 6.4.1.2SiC上的肖特基接触6.4.1n型和p型SiC的肖特基接触6.4金属化第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:6.4.1.1基本原理∈《碳化硅技术
2022-01-24 10:22:28480 6.3.4.1SiC特有的基本现象6.3.4电学表征技术及其局限性6.3氧化及氧化硅/SiC界面特性第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:6.3.3热氧化氧化
2022-01-05 13:59:37493 6.4.2.1基本原理6.4.2n型和p型SiC的欧姆接触6.4金属化第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:6.4.1.2SiC上的肖特基接触∈《碳化硅技术
2022-01-24 10:09:121034 6.4.2.2n型SiC的欧姆接触6.4.2n型和p型SiC的欧姆接触6.4金属化第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:6.4.2.1基本原理∈《碳化硅技术
2022-01-25 09:18:08743 5.3.2.1寿命控制5.3.1SiC中的主要深能级缺陷5.3SiC中的点缺陷第5章碳化硅的缺陷及表征技术《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:5.3.2载流子寿命“杀手
2022-01-06 09:38:25510 5.3.2载流子寿命“杀手”5.3.1SiC中的主要深能级缺陷5.3SiC中的点缺陷第5章碳化硅的缺陷及表征技术《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:5.3.1.2杂质∈《碳化硅
2022-01-06 09:37:40535 5.3.1.2杂质5.3.1SiC中的主要深能级缺陷5.3SiC中的点缺陷第5章碳化硅的缺陷及表征技术《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:5.3.1.1本征缺陷∈《碳化硅技术
2022-01-06 09:30:23552 5.3.1.1本征缺陷5.3.1SiC中的主要深能级缺陷5.3SiC中的点缺陷第5章碳化硅的缺陷及表征技术《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:5.2.3扩展缺陷对SiC器件性能
2022-01-06 09:27:16693 6.4.2.3p型SiC的欧姆接触6.4.2n型和p型SiC的欧姆接触6.4金属化第6章碳化硅器件工艺《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:6.4.2.2n型SiC的欧姆接触
2022-01-26 10:08:16636 5.2.3扩展缺陷对SiC器件性能的影响5.2SiC的扩展缺陷第5章碳化硅的缺陷及表征技术《碳化硅技术基本原理——生长、表征、器件和应用》往期内容:5.2.1SiC主要的扩展缺陷&5.2.2
2022-01-06 09:25:55621 科友半导体突破了8英寸SiC量产关键技术,在晶体尺寸、厚度、缺陷控制、生长速率、制备成本、及装备稳定性等方面取得可喜成绩。2023年4月,科友半导体8英寸SiC中试线正式贯通并进入中试线生产,打破了国际在宽禁带半导体关键材料的限制和封锁。
2023-06-25 14:47:29342 SiC 生产过程分为 SiC 单晶生长、外延层生长及器件制造三大步骤,对应的是产业链衬底、外延、器件与模组四大环节。 主流制造衬底的方式首先以物理气相升华法,在高温真空环境下将粉料升华,通过温场的控制在籽晶表面生 长出碳化硅晶体。
2023-08-04 11:32:13398 SiC,作为发展最成熟的宽禁带半导体材料之一,具有禁带宽度宽、临界击穿电场高、热导率高、电子饱和漂移速度高及抗辐射能力强等特点。
2023-09-28 16:54:261287 Crystals Group Ltd.执行总裁Yuri MAKAROV做了“利用碳化钽的坩埚中物理气相传输生长SiC和AlN晶体”的主题报告。
2023-12-09 14:47:15567 在接下来的一个章节里面,我们将主要介绍用砂子制备半导体级硅的方法,以及后续如何将其转化为晶体和晶圆片(材料制备阶段),以及如何来生产抛光晶圆的过程(晶体生长和晶圆制备)。
2023-12-18 09:30:21217 浮区晶体生长是本文所解释的几个过程之一,这项关键性的技术是在历史早期发展起来的技术,至今仍用于特殊用途的需求。
2023-12-28 09:12:07153 在晶体生长的过程中,由于某些条件的引入将会导致结构缺陷的生成。
2024-01-05 09:12:33123
评论
查看更多