在电路板上分配电力的传统方法基本上有两种:第一种是把48 V变成3.3 V的输出电压,然后再用负载点(POL)变换器把3.3 V变换成负载点所需要的电压。一般地说,在电路板上最需要的就是3.3 V,所以选择3.3 V作为母线电压,这样做的益处是,只需要一次变换,不存在多级变换的方案中每级都存在的损耗。另外一个方法是,先把48 V变换为12 V,然后再把12 V的母线电压变换成为负载点电压,并不是直接把12 V送到负载上。这个方案比较适合功率较高的电路板使用。两种分布式供电系统的结构(DPA)如图1所示。
这两种分布式供电方案各有长处,也各有它的缺点。如果电路板上主要的负载需要3.3 V的工作电压,而且在整个电路板上有多处需要3.3 V,在这种情况下,一般是采用母线电压为3.3 V的分布式供电系统。之所以采用这个方案通常是为了减少电路板上两级电压转换的数量,从而提高输出功率最大的电源的效率。但是,在使用母线电压为3.3 V的分布式供电系统时,它还为每个负载点变换器供给电力。这些负载点变换器产生其他负载所需要的工作电压。另一个问题是,3.3 V输出需要在电路中使用一只控制顺序的FET晶体管。在线路卡上,大多数工作电压需要对接通电源和切断电源的顺序加以控制。 在这种分布式系统中,只能用电路中的顺序控制FET晶体管来进行控制。因为在隔离式转换器中,没有对输出电压的上升速度进行控制。在电路中的顺序控制FET晶体管只是在启动和切断电源时才用得上。在其他时间,这些FET晶体管存在直流损失,会影响效率,增加了元件数量,也提高了成本。由于工作电压一年一年地在下降,在将来,工作电压将下降到2.5 V。在电路板上功率同样大的情况下,电流增大32 %,在配电方面的损失增大74 %左右。电路板上所有其他的工作电压。在电路板上往往有其他输出电压都要由3.3 V的母线电压经过变换得到。往往需要几个负载点输出电压,每个输出电压可以使用高频开关型直流/直流转换器来产生。负载点转换器的高频开关会产生噪音,噪音会进入3.3 V输入线路。由于3.3 V是直接为负载供电的,所以需要很好的滤波器来保护 3.3 V的负载。专用集成电路(ASIC)是用3.3V母线电压供电的,它对噪音十分敏感,如果输入电压没有很好地滤波,有可能会损坏ASIC。ASIC的价钱很高,当然极不希望出现这样的事。如果电路板上需要很大功率,而且电路板上没有那一种电压的负载是占主要的,在这种情况下,一般是采用12V 分布式供电系统。采用这个方案时,在功率相同的情况下,由于电流较小,配电的损失降低了。对于这种供电方案,所有的工作电压都是用负载点转换器来产生的。 在偏重于使用负载点转换器的情况下,用12 V的分布式供电系统实现就容易得多。也可以用电路中的顺序控制FET晶体管来控制负载点接通电源和切断电源的顺序,其中有一些可以由负载点本身来控制,这时就不需要控制顺序的FET晶体管,也减少了直流损失。在市场上现在可以买到的输出电压为12 V的模块,一般是功能齐全的砖块型转换器,它提供经过稳压的12 V输出电压。 在砖块型12 V转换器中有反馈,通过一只光耦合器把反馈信号送回到转换器的原边。砖块型12 V转换器的有效值电流很大,次级需要额定电压为40 V至100 V的FET晶体管,额定电压较高的FET晶体管的Rds(on)高于额定电压较低的FET晶体管的Rds(on),因而转换器的效率比较低──如果平均输出电较低的话就可以用额定电压较低的FET晶体管。在给定输出功率的情况下,具有稳压作用的砖块型转换器往往相当贵,而且体积大,因为在模块内有相当多的元件。使用分布式的12 V母线电压时,也会略微降低负载点转换器的效率,因为输入电压直接影响负载点转换器的开关损生。
如图2所示,在电路板上进行配电,最好的方法是使用一个在3.3 V与12 V之间的中间电压。在使用两级功率转换的情况下,这个中间母线电压不需要严格地进行稳压。新型负载点转换器的输入电压范围很宽,这就是说,产生中间母线电压的隔离式转换器可以用比较简单的方法来实现。对于负载点转换器来讲,最优的输入电压介于6 V至8 V之间,这时,功率损失最小。就两级转换的优化而言,这是最好的办法,尤其是对于功率为 150 W的系统。结果我们可以在很小的面积中、用数量很少的元件,设计出一个高效率的隔离式转换器。功能齐全的砖块型转换器使用的元件数量高达五十个还要多,整个设计不必要地变得十分复杂。如果把输出电压稳压电路去掉,可以大量地减少模块中的元件数量。直流母线电压转换器使用隔离式转换器,它工作在占空比为50 %的状态,因而可以使用比较简单、自行驱动的次级同步整流器,最大程度地提高了功率转换的效率,也最大程度地减轻了对输入电压和输出电压滤波的要求,而且还提高了可靠性。
用于电路板的两级功率转换的未来发展
直流母线电压转器是把48 V输入变成中间母线电压的新方法。中间母线电压为负载点转换器供电。做一个隔离式转换器并不难,它是开环的,占空比固定为50 %,把48 V输入电压变为 8 V的中间母线电压。它使用变比为3:1的变压器,再通过初级半桥整流器得到输入电压与输出电压的比为6:1。由于现在有了作为第二级的负载点转换器解决方案,例如 iPOWIRTM 技术,它的输入电压范围很宽,所以对于48 V系统来讲,这个方法极有吸引力,它也可以用于输入电压变化范围很宽的系统(36 V 至75 V)。 当输入电压在很宽范围变化时,输出电压也以同样的比率变化,所以如果输入电压在36 V至75 V的范围变化,输出电压的变化范围就是6 V至12 V。直流母线转换器作为前端电路加上作为第二级的iPOWIRTM,便构成高效率的两级功率转换方案。直流母线转换电路的效率最高、占的空间最小,在功率密度方面是最好的,大量地减少了元件数量,因而有利于降低总成本。这个方案对输入滤波和输出滤波的要求也是最低的,所以可以进一步减少电容器和其他元件。这种电源系统的控制、监控、同步以及顺序控制都大大地简化了。图3是直流母转换器设计的例子,其中使用了很有创意的新技术,因而可以达到这样的性能。如图4所示,可以利用直流母线转换器解决方案来实现两级供电系统。直流母线转换器芯片组四周是原边半桥整流器控制器和驱动器集成电路和MOSFET技术,正是由于这个芯片组,才能达到这样的性能。
IR2085S是一种新的控制器集成电路,是针对用于电路板上48 V两级配电系统的非稳压型隔离式直流母线电压转换器而研制的。控制器是针对性能、简单、成本进行了优化的。它把一个占空比为50 %的时钟与100 V、1 A的半桥整流器驱动器集成电路整合在一起,装在一个SO-8封装中。它的频率和死区时间可以在外面进行调节,满足各种应用的要求。它还有限制电流的功能。为了限制接通电源时突然增大的电流,在IR2085S里面有软启动功能,它控制占空比,由零慢慢地增加到50 %。在软启动过程中,一般持续2000个栅极驱动信号脉冲这么长时间。在 48 V的直流母线电压转换器演示板上有新的控制器集成电路与原边的低电荷MOSFET晶体管,以及副边的低导通电阻、热性能提高了的MOSFET,它们配合在一起工作,在输出电压为8 V时可以提供150 W功率,效率超过96 %,如图3所示,它的尺寸比1/8砖转换器的外形尺寸还要小。与安装在电路板上、具有稳压作用的常规功率转换器相比,它的效率高3~5%,尺寸小40 %。有一种类似的方法可以用于全桥整流直流母线转换器,它使用新的IR2085S,输出功率达到240 W,尺寸也相似,在输出电流满载时的效率大约为96.4 %。图5是直流母线电压转换器的电路图,在这个电路中,原边使用控制器和驱动器集成电路IR2085S,它推动两只 IRF7493 型FET晶体管───这是新一代低电荷、80 V的n型沟道MOSFET功率晶体管,它采用SO-8封装。在输入电压为36 V至75 V时,这只 FET 晶体管可以换成100V的IRF7495FET 晶体管。在启动时,原边的偏置电压是由一只线性稳压器产生,在稳态时,则由变压器产生原边偏置电压。IRF7380中包含两个80V的 n型沟道 MOSFET功率晶体管,采用SO-8封装,就是用于在稳态时产生原边偏置电压。 IRF6612或者 IRF6618──这是使用DirectFET封装的新型30V、 n型沟道 MOSFET功率晶体管,可以用于副边的自驱动同步整流电路。
DirectFET 半导体封装技术实际上消除了MOSFET晶体管的封装电阻,最大程度地提高了电路的效率,处于导通状态时的总电阻很小。利用DirectFET 封装技术,它到印刷电路板的热阻极小,大约是1°C/W,DirectFET器件的半导体结至顶部(外壳)的热阻大约是 1.4°C/W。 IRF6612 或者IRF6618的栅极驱动电压限制在最优的数值7.5V ,与包含两个 30V、使用 SO-8 封装的MOSFET晶体管IRF9956一样。副边的偏置电路是为了把两个直流母线转换器的输出并联起来,而它们的输入电压是不同的,而且在其中一个输入出现短路或者切断的情况下,仍然可以连续地提供输出功率。
功率为150W 的直流母线转换器的尺寸可以做到是1.95 × 0.85英寸,比符合工业标准的1/8砖还小,1/8砖的标准尺寸是2.30 × 0.90英寸,小了25%。有一些功能齐全的解决方案现在有尺寸为1/4砖的产品,它的标准尺寸是2.30 × 1.45英寸,如果使用直流母线转换器,可节省空间53%。如图6所示,在尺寸这么小的空间里,在功率为150 W时,直流母线转换器芯片组的效率高达96%左右。
为了让大家看到直流母线电压器的优异性能,我们选择原边开关频率为220 kHz。使用较高的开关频率,可以减少输出电压的脉动,而且,由于磁通密降低了,可以使用比较小的磁性元件。变压器的磁芯比较小,损耗也降低了。但是,由于开关频率较高,增加了原边和副边的开关损失,因而降低了整个电路的效率。磁通不平衡是桥式电路的一个问题,为了防止磁通不平衡,高压边和低压边的脉冲宽度之差不到25 ns。针对不同的应用、不同的输出功率和不同的开关器件,频率以及驱动半桥整流电路的低压边脉冲和高压边脉冲之间的死区时间是可以调节的,这是利用外面的定时电容器来实现的。
在两级分布式供电系统中,直流母线转换器是前置级。在对作为第二级的非隔离式负载点转换器进行优化时,也有许多独特的问题需要考虑到。在主要关注的是电路板的空间以及设计的复杂程度的情况下,与完整的模块或完全用分立元件的设计比较,使用嵌入式功能块的设计有很多优点。如图4所示,设计人员可以利用新的iPOWIRTM iP1202功能块周围的那些外部元件,很快地而且很容易地制造一个高性能的两路输出的两相同步降压转换器,为几个负载供电。除了设计人员可以更容易地进行设计,与使用分立元件的同类设计相比,这种使用功能块的设计可以为电脑板节省空间50 %,同时大大地缩短设计时间。
供工程师使用的这些器件是百分之百经过测试、性能是有保证的,而且用这种器件时,电路板的设计不像使用分立元件进行设计时那么复杂。用分立元件进行设计时,这些是不可能做到的。
此外,它的转换效率很高,而且十分灵活,可以很容易地用它为需要不同电压的其他负载供电。
简单的解决方案
为了提供能够解决上述问题的解决方案,并且还具所需要的功能,国际整流器公司把它先进的iPOWIR 封装技术用于制造一种 集成功能块。国际整流器公司运用它在功率系统设计和芯片组方面的专业知识,把 PWM 控制器和驱动器以及相应的控制MOSFET开关和同步MOSFET 开关、肖特基二极管和输入旁通电容器都整合在一个封装之中。为了提高性能,在这单一封装的模块中,功率元件匹配得很好,电路的布置进行了最优化设计。得到的结果是,这个器件可以当作基本功能块用于设计高性能的两路同步降压转换器。在完整的两路输出电源所需要的外部元件是输出电感器、输出电容器、输入电容器(图7a),加上几只其他的无源元件。因为内部电路是与固定频率的电压型控制信号同步的,可以很容易地把两路输出并联起来作为一路电压输出,而输出供电流的能力则增大一倍(图7b)。
在单输出或者并联输出的电路中,使用相位相差 180°的工作方式,脉动的频率提高了,它的优点是,可以减少外部元件的数量和尺寸。 iP1202可以直接由直流母线转换器的输出电压供给电力,外面不需要偏置电路,又进一步减少了外部元件,也降低了设计的复杂程度。新的功能块的尺寸是9.25 mm × 15.5 mm × 2.6 mm ,可以为设计人员节省十分宝贵的电路板空间,并且提高了功率密度──这是一个很有价值的贡献。
iP1202的每一个通道都使用简单的电阻分压电路,它的各路输出电压可以独立地进行调节,输入工作电压的范围从5.5 V至13.2 V,作为前端电路的直流母线电压转换器为它供电是很容易的。利用这个负载点转器解决方案,可以实现独立的15 A输出或者两相30 A输出。用直流母线电压转换器为 iP1202供电,产生三个输出,它的总效率如图8所示。
在器件上有一个设定电流过载保护的引脚,可以用它设定电流过载保护电路在什么时候起作用。可以把它连接成栓锁,或者在检测到短路时自动启动。对于现在的电讯系统或网络系统中,这是很重要的,因为很多电讯系统和网络系统是在距离很远的地方,增加它们正常运作的时间,具备自动启动的能力,可以降低维护成本,也是很方便的,这些都会影响服务质量。
此外,iP1202可以与其他的负载点转换器同步 ,这样输入端的EMI滤波电路可以简化。为了对印刷电路板进行准确的热设计,这个基本电路块在设计时也保证功率损耗在一定范围之内,它们有一个安全的工作范围。对于使用分立元件的传统电源电路,热设计的计算是很复杂的,也很花时间,许多与功率损失有关的一次近似变量都必须虑到。而且,布线和杂散寄生参数这些二次效应造成的损耗实际上都没有考虑进去。在设计开发阶段,更难把二次效应准确考虑在内。
由于功率损耗额定值保证不会超过某个最大值,由于SOA是有保证的,在进行热设计时,需要考虑的问题得到了简化。因为功率损失有一个限度,是已知的,是经过测试的,可以很容易地与SOA连系起来,因而可以可靠地、安全地长期运作。
这两种分布式供电方案各有长处,也各有它的缺点。如果电路板上主要的负载需要3.3 V的工作电压,而且在整个电路板上有多处需要3.3 V,在这种情况下,一般是采用母线电压为3.3 V的分布式供电系统。之所以采用这个方案通常是为了减少电路板上两级电压转换的数量,从而提高输出功率最大的电源的效率。但是,在使用母线电压为3.3 V的分布式供电系统时,它还为每个负载点变换器供给电力。这些负载点变换器产生其他负载所需要的工作电压。另一个问题是,3.3 V输出需要在电路中使用一只控制顺序的FET晶体管。在线路卡上,大多数工作电压需要对接通电源和切断电源的顺序加以控制。 在这种分布式系统中,只能用电路中的顺序控制FET晶体管来进行控制。因为在隔离式转换器中,没有对输出电压的上升速度进行控制。在电路中的顺序控制FET晶体管只是在启动和切断电源时才用得上。在其他时间,这些FET晶体管存在直流损失,会影响效率,增加了元件数量,也提高了成本。由于工作电压一年一年地在下降,在将来,工作电压将下降到2.5 V。在电路板上功率同样大的情况下,电流增大32 %,在配电方面的损失增大74 %左右。电路板上所有其他的工作电压。在电路板上往往有其他输出电压都要由3.3 V的母线电压经过变换得到。往往需要几个负载点输出电压,每个输出电压可以使用高频开关型直流/直流转换器来产生。负载点转换器的高频开关会产生噪音,噪音会进入3.3 V输入线路。由于3.3 V是直接为负载供电的,所以需要很好的滤波器来保护 3.3 V的负载。专用集成电路(ASIC)是用3.3V母线电压供电的,它对噪音十分敏感,如果输入电压没有很好地滤波,有可能会损坏ASIC。ASIC的价钱很高,当然极不希望出现这样的事。如果电路板上需要很大功率,而且电路板上没有那一种电压的负载是占主要的,在这种情况下,一般是采用12V 分布式供电系统。采用这个方案时,在功率相同的情况下,由于电流较小,配电的损失降低了。对于这种供电方案,所有的工作电压都是用负载点转换器来产生的。 在偏重于使用负载点转换器的情况下,用12 V的分布式供电系统实现就容易得多。也可以用电路中的顺序控制FET晶体管来控制负载点接通电源和切断电源的顺序,其中有一些可以由负载点本身来控制,这时就不需要控制顺序的FET晶体管,也减少了直流损失。在市场上现在可以买到的输出电压为12 V的模块,一般是功能齐全的砖块型转换器,它提供经过稳压的12 V输出电压。 在砖块型12 V转换器中有反馈,通过一只光耦合器把反馈信号送回到转换器的原边。砖块型12 V转换器的有效值电流很大,次级需要额定电压为40 V至100 V的FET晶体管,额定电压较高的FET晶体管的Rds(on)高于额定电压较低的FET晶体管的Rds(on),因而转换器的效率比较低──如果平均输出电较低的话就可以用额定电压较低的FET晶体管。在给定输出功率的情况下,具有稳压作用的砖块型转换器往往相当贵,而且体积大,因为在模块内有相当多的元件。使用分布式的12 V母线电压时,也会略微降低负载点转换器的效率,因为输入电压直接影响负载点转换器的开关损生。
如图2所示,在电路板上进行配电,最好的方法是使用一个在3.3 V与12 V之间的中间电压。在使用两级功率转换的情况下,这个中间母线电压不需要严格地进行稳压。新型负载点转换器的输入电压范围很宽,这就是说,产生中间母线电压的隔离式转换器可以用比较简单的方法来实现。对于负载点转换器来讲,最优的输入电压介于6 V至8 V之间,这时,功率损失最小。就两级转换的优化而言,这是最好的办法,尤其是对于功率为 150 W的系统。结果我们可以在很小的面积中、用数量很少的元件,设计出一个高效率的隔离式转换器。功能齐全的砖块型转换器使用的元件数量高达五十个还要多,整个设计不必要地变得十分复杂。如果把输出电压稳压电路去掉,可以大量地减少模块中的元件数量。直流母线电压转换器使用隔离式转换器,它工作在占空比为50 %的状态,因而可以使用比较简单、自行驱动的次级同步整流器,最大程度地提高了功率转换的效率,也最大程度地减轻了对输入电压和输出电压滤波的要求,而且还提高了可靠性。
用于电路板的两级功率转换的未来发展
直流母线电压转器是把48 V输入变成中间母线电压的新方法。中间母线电压为负载点转换器供电。做一个隔离式转换器并不难,它是开环的,占空比固定为50 %,把48 V输入电压变为 8 V的中间母线电压。它使用变比为3:1的变压器,再通过初级半桥整流器得到输入电压与输出电压的比为6:1。由于现在有了作为第二级的负载点转换器解决方案,例如 iPOWIRTM 技术,它的输入电压范围很宽,所以对于48 V系统来讲,这个方法极有吸引力,它也可以用于输入电压变化范围很宽的系统(36 V 至75 V)。 当输入电压在很宽范围变化时,输出电压也以同样的比率变化,所以如果输入电压在36 V至75 V的范围变化,输出电压的变化范围就是6 V至12 V。直流母线转换器作为前端电路加上作为第二级的iPOWIRTM,便构成高效率的两级功率转换方案。直流母线转换电路的效率最高、占的空间最小,在功率密度方面是最好的,大量地减少了元件数量,因而有利于降低总成本。这个方案对输入滤波和输出滤波的要求也是最低的,所以可以进一步减少电容器和其他元件。这种电源系统的控制、监控、同步以及顺序控制都大大地简化了。图3是直流母转换器设计的例子,其中使用了很有创意的新技术,因而可以达到这样的性能。如图4所示,可以利用直流母线转换器解决方案来实现两级供电系统。直流母线转换器芯片组四周是原边半桥整流器控制器和驱动器集成电路和MOSFET技术,正是由于这个芯片组,才能达到这样的性能。
IR2085S是一种新的控制器集成电路,是针对用于电路板上48 V两级配电系统的非稳压型隔离式直流母线电压转换器而研制的。控制器是针对性能、简单、成本进行了优化的。它把一个占空比为50 %的时钟与100 V、1 A的半桥整流器驱动器集成电路整合在一起,装在一个SO-8封装中。它的频率和死区时间可以在外面进行调节,满足各种应用的要求。它还有限制电流的功能。为了限制接通电源时突然增大的电流,在IR2085S里面有软启动功能,它控制占空比,由零慢慢地增加到50 %。在软启动过程中,一般持续2000个栅极驱动信号脉冲这么长时间。在 48 V的直流母线电压转换器演示板上有新的控制器集成电路与原边的低电荷MOSFET晶体管,以及副边的低导通电阻、热性能提高了的MOSFET,它们配合在一起工作,在输出电压为8 V时可以提供150 W功率,效率超过96 %,如图3所示,它的尺寸比1/8砖转换器的外形尺寸还要小。与安装在电路板上、具有稳压作用的常规功率转换器相比,它的效率高3~5%,尺寸小40 %。有一种类似的方法可以用于全桥整流直流母线转换器,它使用新的IR2085S,输出功率达到240 W,尺寸也相似,在输出电流满载时的效率大约为96.4 %。图5是直流母线电压转换器的电路图,在这个电路中,原边使用控制器和驱动器集成电路IR2085S,它推动两只 IRF7493 型FET晶体管───这是新一代低电荷、80 V的n型沟道MOSFET功率晶体管,它采用SO-8封装。在输入电压为36 V至75 V时,这只 FET 晶体管可以换成100V的IRF7495FET 晶体管。在启动时,原边的偏置电压是由一只线性稳压器产生,在稳态时,则由变压器产生原边偏置电压。IRF7380中包含两个80V的 n型沟道 MOSFET功率晶体管,采用SO-8封装,就是用于在稳态时产生原边偏置电压。 IRF6612或者 IRF6618──这是使用DirectFET封装的新型30V、 n型沟道 MOSFET功率晶体管,可以用于副边的自驱动同步整流电路。
DirectFET 半导体封装技术实际上消除了MOSFET晶体管的封装电阻,最大程度地提高了电路的效率,处于导通状态时的总电阻很小。利用DirectFET 封装技术,它到印刷电路板的热阻极小,大约是1°C/W,DirectFET器件的半导体结至顶部(外壳)的热阻大约是 1.4°C/W。 IRF6612 或者IRF6618的栅极驱动电压限制在最优的数值7.5V ,与包含两个 30V、使用 SO-8 封装的MOSFET晶体管IRF9956一样。副边的偏置电路是为了把两个直流母线转换器的输出并联起来,而它们的输入电压是不同的,而且在其中一个输入出现短路或者切断的情况下,仍然可以连续地提供输出功率。
功率为150W 的直流母线转换器的尺寸可以做到是1.95 × 0.85英寸,比符合工业标准的1/8砖还小,1/8砖的标准尺寸是2.30 × 0.90英寸,小了25%。有一些功能齐全的解决方案现在有尺寸为1/4砖的产品,它的标准尺寸是2.30 × 1.45英寸,如果使用直流母线转换器,可节省空间53%。如图6所示,在尺寸这么小的空间里,在功率为150 W时,直流母线转换器芯片组的效率高达96%左右。
为了让大家看到直流母线电压器的优异性能,我们选择原边开关频率为220 kHz。使用较高的开关频率,可以减少输出电压的脉动,而且,由于磁通密降低了,可以使用比较小的磁性元件。变压器的磁芯比较小,损耗也降低了。但是,由于开关频率较高,增加了原边和副边的开关损失,因而降低了整个电路的效率。磁通不平衡是桥式电路的一个问题,为了防止磁通不平衡,高压边和低压边的脉冲宽度之差不到25 ns。针对不同的应用、不同的输出功率和不同的开关器件,频率以及驱动半桥整流电路的低压边脉冲和高压边脉冲之间的死区时间是可以调节的,这是利用外面的定时电容器来实现的。
在两级分布式供电系统中,直流母线转换器是前置级。在对作为第二级的非隔离式负载点转换器进行优化时,也有许多独特的问题需要考虑到。在主要关注的是电路板的空间以及设计的复杂程度的情况下,与完整的模块或完全用分立元件的设计比较,使用嵌入式功能块的设计有很多优点。如图4所示,设计人员可以利用新的iPOWIRTM iP1202功能块周围的那些外部元件,很快地而且很容易地制造一个高性能的两路输出的两相同步降压转换器,为几个负载供电。除了设计人员可以更容易地进行设计,与使用分立元件的同类设计相比,这种使用功能块的设计可以为电脑板节省空间50 %,同时大大地缩短设计时间。
供工程师使用的这些器件是百分之百经过测试、性能是有保证的,而且用这种器件时,电路板的设计不像使用分立元件进行设计时那么复杂。用分立元件进行设计时,这些是不可能做到的。
此外,它的转换效率很高,而且十分灵活,可以很容易地用它为需要不同电压的其他负载供电。
简单的解决方案
为了提供能够解决上述问题的解决方案,并且还具所需要的功能,国际整流器公司把它先进的iPOWIR 封装技术用于制造一种 集成功能块。国际整流器公司运用它在功率系统设计和芯片组方面的专业知识,把 PWM 控制器和驱动器以及相应的控制MOSFET开关和同步MOSFET 开关、肖特基二极管和输入旁通电容器都整合在一个封装之中。为了提高性能,在这单一封装的模块中,功率元件匹配得很好,电路的布置进行了最优化设计。得到的结果是,这个器件可以当作基本功能块用于设计高性能的两路同步降压转换器。在完整的两路输出电源所需要的外部元件是输出电感器、输出电容器、输入电容器(图7a),加上几只其他的无源元件。因为内部电路是与固定频率的电压型控制信号同步的,可以很容易地把两路输出并联起来作为一路电压输出,而输出供电流的能力则增大一倍(图7b)。
在单输出或者并联输出的电路中,使用相位相差 180°的工作方式,脉动的频率提高了,它的优点是,可以减少外部元件的数量和尺寸。 iP1202可以直接由直流母线转换器的输出电压供给电力,外面不需要偏置电路,又进一步减少了外部元件,也降低了设计的复杂程度。新的功能块的尺寸是9.25 mm × 15.5 mm × 2.6 mm ,可以为设计人员节省十分宝贵的电路板空间,并且提高了功率密度──这是一个很有价值的贡献。
iP1202的每一个通道都使用简单的电阻分压电路,它的各路输出电压可以独立地进行调节,输入工作电压的范围从5.5 V至13.2 V,作为前端电路的直流母线电压转换器为它供电是很容易的。利用这个负载点转器解决方案,可以实现独立的15 A输出或者两相30 A输出。用直流母线电压转换器为 iP1202供电,产生三个输出,它的总效率如图8所示。
在器件上有一个设定电流过载保护的引脚,可以用它设定电流过载保护电路在什么时候起作用。可以把它连接成栓锁,或者在检测到短路时自动启动。对于现在的电讯系统或网络系统中,这是很重要的,因为很多电讯系统和网络系统是在距离很远的地方,增加它们正常运作的时间,具备自动启动的能力,可以降低维护成本,也是很方便的,这些都会影响服务质量。
此外,iP1202可以与其他的负载点转换器同步 ,这样输入端的EMI滤波电路可以简化。为了对印刷电路板进行准确的热设计,这个基本电路块在设计时也保证功率损耗在一定范围之内,它们有一个安全的工作范围。对于使用分立元件的传统电源电路,热设计的计算是很复杂的,也很花时间,许多与功率损失有关的一次近似变量都必须虑到。而且,布线和杂散寄生参数这些二次效应造成的损耗实际上都没有考虑进去。在设计开发阶段,更难把二次效应准确考虑在内。
由于功率损耗额定值保证不会超过某个最大值,由于SOA是有保证的,在进行热设计时,需要考虑的问题得到了简化。因为功率损失有一个限度,是已知的,是经过测试的,可以很容易地与SOA连系起来,因而可以可靠地、安全地长期运作。
- 分布式电(5145)
相关推荐
8KW碳化硅全桥LLC解决方案
的DC/DC变换器的设计带来极大的挑战。 首先是器件的选择,800V的母线电压,要求DC/DC的MOSFET的额定电压至少需要1000V,而在这个电压等级下的MOS管选择非常有限。所以,目前大多数方案
2018-10-17 16:55:50
分布式电源分布式电源装置是指什么?有何特点
区的电力供应,节约输变电投资,提高供电可靠性等。含义简明的分布式电源定义为:35kV及以下电压等级的电源,不能直接连接到中央输电系统,主要包括发电设备和储能装置。特点分布式能源系统不是简单地采用传统的发电技术,而是基于自动控制系统、先进的材料技术、灵活的制造技术等新技术,具有低污染排放
2021-12-29 06:51:27
分布式电源对配电网网损有何影响
34节点配电网算例的说明研究分布式电源对配电网网损的影响分布式电源容量对网损的影响分布式电源位置对网损的影响分布式电源对配电网电压支撑作用分布式电源接入位置对配电网电压作用分布式电源容量对电压支撑作用matlab源代码,代码按照高水平文章复现,保证正确...
2021-12-29 08:00:23
分布式系统的优势是什么?
当讨论分布式系统时,我们面临许多以下这些形容词所描述的 同类型: 分布式的、删络的、并行的、并发的和分散的。分布式处理是一个相对较新的领域,所以还没有‘致的定义。与顺序计算相比、并行的、并发的和分布式的计算包括多个PE问的集体协同动作。这些术语在范围一卜相互覆盖,有时也交换使用。
2020-03-31 09:01:18
分布式系统的组合相位噪声性能怎么评估?
在分布式系统中,共同噪声源是相关的,而分布式噪声源如果不相关,在RF信号组合时就会降低。对于系统中的大部分组件,这都可以非常直观地加以评估。对于锁相环,环路中的每个组件都有与之相关联的噪声传递函数
2019-08-02 08:35:04
分布式发电技术与微型电网
几种分布式发电简介2.分布式发电与配电网互联问题3.微型电网技术4.分布式发电(电源)技术应用的障碍和瓶颈5.分布式发电(电源)技术发展方向6.结语
2011-03-11 13:37:39
分布式能源系统当微型电网技术应用
分布式能源系统当微型电网技术应用、电网微型电网的分布式电源及接入模式在国际上由于电力市场的拓展,在受到了发电投资的回报周期较长和几次国际上大面积的停电所影响,新增的电源当中分布式的发电设施,所占比例
2011-06-13 14:25:10
分布式软件系统
计算机硬件的配置方式和相应的功能配置方式。它是一种多处理器的计算机系统,各处理器通过互连网络构成统一的系统。系统采用分布式计算结构,即把原来系统内中央处理器处理的任务分散给相应的处理器,实现不同功能的各个处理器相互协调,共享系统的外设与软件。这样就加快了系统的处理速度,简化了主机的逻辑结构
2009-07-22 14:53:12
直流母线电压检测
本帖最后由 gk320830 于 2015-3-7 17:55 编辑
本人想检测三电平变频器直流母线电压通过分压电阻后使用差动放大器检测求教检测电阻和左端电压的关系及电阻选择(相间电压3000v,检测电阻电流应该只有几毫安)
2013-09-03 13:43:40
直流到直流变换器ACDC
最近面试各种电源岗 个人记录一下DCDC:直流到直流变换器ACDC:交流到直流变换器SMPS:switching mode power supplyLDO:low dropout 低压差线性稳压电源
2021-10-29 08:15:07
选择最佳DC/DC变换器的要点及途径
DC-DC电源变换器将一个固定的直流电压变换为可变的直流电压,这种技术被应用于更广泛的应用领域。DC-DC变换器是通信设备中最常用的功能电路之一,其质量和效率直接影响通信设备的正常运行。一、元器件
2014-06-05 15:15:32
选择最佳DC/DC变换器的要点及途径
导读: DC-DC电源变换器将一个固定的直流电压变换为可变的直流电压,这种技术被应用于更广泛的应用领域。DC-DC变换器是通信设备中最常用的功能电路之一,其质量和效率直接影响通信设备的正常运行
2018-09-28 16:03:17
BOOST升压变换器的基本原理是什么
容实现这个功能,这种升压变换器称为电容充电泵;如果使用电感实现这个功能,这种升压变换器称为BOOST变换器。另外,也可以将直流电压变为交流,然后使用高频变压器升压,如反激、正激、推挽、半桥和全桥等电源结构...
2021-12-29 06:01:10
BUCK变换器设计
的BUCK,主要采用PSIM仿真,适用于需要设计此变换器的课设同学。一、设计指标及要求BUCK变换器有关指标为: 输入电压:标称直流48V,范围: 43V~53V 输出电压:直流25V, 4A 输出电压纹波: 100mV 电流纹波: 0.25A 开关频率: 250kHz
2021-11-16 07:22:02
Boost-Buck光伏接口变换器控制策略研究
控制特性要求。若微网电能不足,光伏电池能以最大功率输出;若微网电能过剩,光伏电池输出要能支撑母线电压。其次,直流微网接口电路无需逆变;微网本身一般对大电网隔离,可降低隔离要求,相应提高变换器效率将是
2019-06-03 05:00:03
DC-DC变换器的基本电路
DC-DC是英语直流变直流的缩写,所以DC-DC电路是某直流电源转变为不同电压值的电路。DC-DC变换器的基本电路有升压变换器、降压变换器、升降压变换器三种。在同一电路中会有升压反向、降压升压等功能
2021-11-17 06:37:14
LED分布式恒流原理
估算电源寿命是一种办法,和传统开关电源长期实战技术积累还是有些差距!分布式恒流也有它缺点,开始会增加部分设计成本,产品设计品质与线路设计选择需要权衡。可能成本增加是短暂的,表面的,应该综合考量。 2.
2011-03-09 16:47:54
U/F变换器和F/U变换器
、通信设各、调频、锁相和模数变换等许多领域得到了广泛的应用。因为U/F和F/U变换器不需要同步时钟,所以在与微机连接时电路简单。模拟电压变化转变成频率变换以后,其抗干扰的能力增强了,因此尤其适用于遥控系统
2011-11-10 11:28:24
【转】数码产品中直流模块的DC/DC 转换原理
律变化,以创造零电压开通或零电流关断的条件,以这种技术为主导的直流转换电源变换器称谐振变换器,它有串联和并联谐振变换器两种。如果在桥式变换器(用谐振式方法控制)桥的输出端为串联LC网络,再接变压器原边
2018-07-01 21:12:48
串联谐振变换器
电压转换比特性的改善。按照谐振元件的谐振方式可分为串联谐振(也称为串联谐振试验装置)变换器、并联谐振变换器以及两者结合产生的串并联谐振变换器。串联谐振:由于是串联分压方式,其直流增益总是小于1,类似
2020-10-13 16:49:00
伺服控制系统,进线电压降低后,输出扭矩变没变?
讨论一下,伺服控制系统,进线电压降低后,输出扭矩变没变?
例如840D系统,进线是380V,直流母线约为600V,到电机。
若进线电压变为220V,直流母线约为340V,那么电机输出扭矩会不会变呢?
2023-11-10 07:47:09
光伏分布式发电中的逆变器设计
200A,符合我这次设计的光伏发电逆变系统对于模块的要求。 3.5 逆变器支流侧电容的设计 对于分布式光伏发电系统,其直流侧需要增加电容保证直流侧电压稳定,不出现电压突变。那么需要设计出符合以下公式
2018-09-28 16:27:09
功率变换器中的功率磁性元件分布参数
的模型变压器模型电感器模型反激变换器实际工作波形DCM下波形与变压器参数CCM下波形与变压器参数电感分布电容EPC对损耗的影响变压器中的磁场/涡流场分布特性铜箔导体的涡流损耗特性降低变压器的绕组损耗
2021-11-09 06:30:00
双向变换器
本人在做双半桥双向变换器,当变换器工作与BOOST状态时,输出电压值总是打不到稳态值。低压侧输入电压为24V,高压侧输出电压为100V,现在高压侧输出电压只有96V。不知道什么原因。跪求大侠解答,不胜感激。
2016-04-14 21:18:38
双管正激变换器有什么优点?
由于正激变换器的输出功率不像反激变换器那样受变压器储能的限制,因此输出功率较反激变换器大,但是正激变换器的开关电压应力高,为两倍输入电压,有时甚至超过两倍输入电压,过高的开关电压应力成为限制正激变换器容量继续增加的一个关键因素。
2019-09-17 09:02:28
变频器母线电压控制问题
请问一下,一般变频器中直流母线电压是否需要设置一个控制器,还是只是在回馈制动的时候,接通一个放电电阻,将高压降下来? 如果只用制动电阻降压的话,是不是只能降压调节,如果直流母线电压由于负载瞬间变重而瞬时偏低,就无法调节?实际变频器是怎么处理这个问题?各位有经验的前辈指点一下,多谢!
2017-01-22 12:07:23
变频器直流母线与电源的测试方法
变频器直流母线欠压点和恢复点测试测试说明:当直流母线电压过低时,变频器可能会出现一些异常情况。因而有必要在其母线电压低到一定程度时进行欠压保护。测试设备要求:万用表、WWL-LDG直流高压电源
2018-04-08 10:24:20
各种分布式电源的电气特性
特性(主要包括电压V、电流I、有功P、无功Q)不同,需要的建模方式也有所不同。1.常见的分布式电源2.分布式电源建模燃料电池是电力电子变换器接口型的潮流计算模型,它在潮流计算里面可以使用pq,pq节点来进行处理。是吗?是pq吗?不是的是pv节点,那么它为什么是pv节点呢?因为它输出的直流电压是
2021-07-12 07:54:19
在分布式电源系统中如何采用集成DC-DC转换器节省空间、缩短研发时间?
传统的分布式电源架构采用多个隔离型 DC-DC 电源模块将 48V 总线电压转换到系统电源电压,如 5V、3.3V 和 2.5V。然而该配置很难满足快速响应的低压处理器、DSP、ASIC 以及
2021-03-11 06:49:54
基于分布式电源优化器的PV系统优化
MPPT的工作范围和电压范围。由于电池板之间的差别很大,在这些情况下,采用分布式MPPT的电源优化器,可独立地增强并提高电池板的性能。 图5 :采用集中式MPPT技术并网的PV系统。(来源:美国美国国家
2019-05-13 14:11:49
基于分布式电源并网逆变器系统设计与仿真
1 分布式电源并网逆变器系统设计 1.1 DC-DC变换器 DC-DC变换器是通过半导体阀器件的开关动作将直流电压先变为交流电压,经整流后又变为极性和电压值不同的直流电压的电路,这里要阐述
2018-09-27 10:22:19
基于SG3525和DC/DC变换器的大电流低电压开关电源设计
引言本文介绍了以SG3525为控制核心、全桥变换器为主电路、输出直流电流45~90A可调的大电流低电压直流开关电源的设计,其输出电压可在5~15V自动调整以适应负载变化,从而保持恒定的输出电流。1
2018-10-19 16:38:40
基于UC3842的电源变换器设计
变换器的设计中,由UC3842组成的反激式开关电源是整个变换器的关键部分,核心部分为PWM控制单元。利用现有的飞机发电机输出电压作为开关电源的输入,得到PWM控制单元的直流工作电压,同时利用UC3842
2018-10-19 16:41:22
如何利用FPGA设计无线分布式采集系统?
的选择无线分布式采集来进行。现有的无线分布式采集系统中,往往使用单片机、DSP等作为系统的主控控制单元。但是由于其自身工作特点,往往对于精确的定时控制以及并行处理能力上比FPGA弱。
2019-10-14 07:10:38
如何自制车载电源直流变换器
现代电子设备中开关电源的应用日益广泛,给直流变换器带来了更多的使用空间。直流变换器比逆变器成本要低得多,在很多地方都可以用直流变换器替代逆变器,如在汽车上使用手机充电器、卫星接收机、笔记本电脑
2021-05-12 06:31:38
如何设计分布式干扰系统?
什么是分布式干扰系统?分布式干扰系统是一种综合化、一体化、小型化、网络化和智能化系统,是将众多体积小,重量轻,廉价的小功率侦察干扰机装置在易于投放的小型平台上,撒布在接近***扰目标空域地,通过指令
2019-08-08 06:57:44
山胜电子电源模块PFC变换器
要求不特别高时,将PFC变换器和后级DC/DC变换器组合成一个拓扑,构成单级高功率因数AC/DC开关电源,只用一个主开关管,可使功率因数校正到0.8以上,并使输出直流电压可调,调整后的直流电压就促进
2013-08-20 16:00:47
常见的分布式供电技术有哪些?
的分散性提高了电力系统的接口容纳能力,可以分散负荷,分摊用电压降,减少电网的负荷。 4. 降低电力传输成本:分布式供电技术可以减少输电线路长度,降低输电能耗和传输成本,同时降低电力设备的建设成
2023-04-10 16:28:30
新能源发电直流微网控制
直流微电网:分布式电源、储能装置、负荷等均连接至直流母线,直流网络再通过电力电子逆变装置连接至外部交流电网。直流微电网通过电力电子变换装置可以向不同电压等级的交流、直流负荷提供电能,分布式电源和负荷的波动可由储能装置在直流侧调节。
2019-01-25 19:15:56
最佳的开关式DC/DC变换器
,从而得到所需要的输出电压。对某一工作来讲,最佳的开关式DC/DC变换器是可以用最小的安装成本满足系统总体需要的。这可以通过一组描述开关式DC/DC变换器性能的参数来衡量,它们包括:高效率、小的...
2021-11-16 07:54:48
未来电源架构的发展趋势
的DC-DC转换器转换成合适的电压为负载供电。这种布局可以改善系统的动态反应,避免整个系统在低电压操作所产生的问题。 中转母线架构 弥补了分布式电源架构的缺点。它把DC-DC转换器的隔离、变压及稳压
2009-08-31 15:14:28
求助 直流正母线电压采集线路
如图 是 直流绝缘检测中的正母线电压采集,下面1:1的反相放大是干嘛的,正母线p0.0不是就能检测到电压了吗?为什么要加反相放大再采集一遍,经过反相放大后不就变成负电压了吗?
2016-12-30 16:11:18
浅谈电源模块与直流电源的应用
、噪声隔离:(模拟电路与数字电路隔离、强弱信号隔离) 3、接地环路消除:远程信号传输\分布式电源供电系统 二、保护: 短路保护、过压保护、欠压保护、过流保护、其它保护 三、电压变换: 升压变换
2018-09-26 09:53:42
燃料电池车的可调DC电源——双向Zeta-Sepic直流变换器电路设计方案
1、前言DC/DC变换器是燃料电池车动力系统中一个重要部分。主要功能是把不可调的直流电源变为可调的直流电源。如何有效地控制变换器的各个参数,不仅关系到FCE(Fuel Cell Engineer
2020-09-01 14:56:24
电机控制导致母线电压波动的问题
最近在公司调试电机的时候,当电机从一个很高的速度急减速时会在母线电压上产生一个很高的电压波动。母线电压正常12V,急减速时候最高会达到45V左右。电机是永磁同步机,FOC控制。怎么能有效的使这个电压波动减低呢?当母线电压过高会给其他电路带来问题
2019-03-04 17:57:59
电池驱动系统的DC-DC变换器选择
电池驱动系统的设计方面,DC-DC变换器的选择至关重要。最合适的DC-DC变换器才能满足电池分布式并网发电系统的需求。 隔离电压型DC-DC变换器 隔离电压型的DC-DC变换器是目前比较常见
2023-03-03 11:32:05
直驱式风电混合储能系统matlab/simulink仿真模型 精选资料分享
风力发电系统采用的直驱式风机+AC/DC变换器+MPPT控制+矢量控制。储能采用的是超级电容+蓄电池混合储能系统,储能系统的功率分配采用的是下垂控制。以母线电压稳定为控制目标。仿真设置风速变化,观察系统的功率变化以及母线电压情况,其中母线电压参考值可以根据实际情况设置,也可以设置为800V。...
2021-07-12 07:27:40
集中式电源架构和分布式电源架构
电源,然后经过板上电源模块转换到各个目标电源进行使用,电源架构一般有集中式电源架构和分布式电源架构。1、集中式电源架构即输入电压直接通过隔离DCDC模块转换到各个目标电压,但成本高,占用PCB面积大。2、分布式电源架构输入电源经过隔离DCDC电源转换到中间电源再经过非隔离电源模块转换到最终目标电压
2021-11-15 07:11:43
高压直流模块电源/变换器简析
变换器作为系统电源中为设备提供直流动力的主要装置,面临着体积更小、重量更轻、效率更高、可靠性更好等诸多要求。要达到上述要求,变换器必须实现工作频率由低频向高频的转变。变换器工作在硬开关方式下,若不断...
2021-11-17 08:16:08
大容量变换器直流母线的 PEEC 模型
大容量变换器的直流母线尺寸较大、结构复杂,建立其比较准确的高频电路模型,是准确分析大容量变换器换流过程和电磁干扰(EMI)特性的关键问题之一。本文以一台用于大容量
2009-04-08 14:53:5132
直流直流变换器
3.1概述3.2直流-直流降压变换器(BUCK变换器)3.3直流-直流升压变换器(BOOST变换器)3.4直流降压-升压变换器(BUCK-BOOST变换器)3.5直流升压-降压变换器(CUK变换器)3.6
2010-03-03 22:31:217
自制车载电源直流变换器应用
自制车载电源直流变换器应用
本文介绍的直流变换器电路简单实用,容易制作,成本低,效率可达96% 。在汽车上使用或没有市电的地方使用非常
2009-12-25 11:56:14805
在分布式电源系统中采用集成DC-DC转换器节省空间、缩短研发
在分布式电源系统中采用集成DC-DC转换器节省空间、缩短研发时间
传统的分布式电源架构采用多个隔离型DC-DC电源模块将48V总线电压转换到系统电源
2010-04-23 08:47:281477
直流母线电压检测电路图
为了降低硬件成本,设计直流母线电压检测电路时采用了分压电阻的方法,而没有采用电压传感器。采用这种分压电阻的方法结构简单,易于调试。
2010-08-19 10:32:0518429
变频器中直流母线电容的纹波电流计算
针对变频器中直流母线电容的纹波电流是影响其产品寿命的关键因素之一。本人通过对其电路工作过程的分析确定出具体的计算公式,以此作为变频器中直流母线电容设计参考
2011-08-30 14:44:05220
逆变器母线电压纹波补偿的研究
对于逆变器而言,直流母线电压纹波的补偿,在改善逆变电压的THD和延长直流母线电容的寿命两方面,具有重要的意义。可以将直流母线电压纹波分成高频和低频两部分,其中高频部分是由于升压电路的开关脉动
2016-01-04 15:02:290
uc3578电信Buck变换器评估板
的子系统。分布式电源的优点是圈定在[ 1 ],随着分布式电源架构和应用程序的更多信息。 电信业利用48V电池当了许多年的电源,并选择了48vdc为母线电压的选择。[ 1 ]厂家已作出回应,把直流48vdc直流转换器模块的输出在1瓦到几百瓦,
2017-06-26 10:44:4510
非隔离变换器模块输入直流母线电压的滤波考虑
传统上,有一个共同的直流输入总线电压,为印刷电路板(PCB)的所有非孤立点负载(转换器)模块提供电源。现在大多数应用程序都有多个转换器模块分布在设计者的电路板上。他们主要是降压转换器,结合开关技术,以提高效率。
2017-07-18 09:07:3612
分布式电源并网逆变器系统的设计
1分布式电源并网逆变器系统设计 1.1 DC-DC变换器 DC-DC变换器是通过半导体阀器件的开关动作将直流电压先变为交流电压,经整流后又变为极性和电压值不同的直流电压的电路,这里要阐述的是中间经过
2017-10-26 10:14:378
交直流混合微电网中直流母线电压纹波抑制方法
在交直流混合微电网中,若汇入直流母线中的功率瞬时值中含有纹波分量(如三相不平衡交流负荷、交直流微电网互联功率存在不平衡有功功率分量等1,均会导致直流母线电压出现纹波分量,严重时会影响系统供电电能质量
2017-12-19 10:34:364
直流微电网双向直流变换器反步滑模控制
直流微网中母线电压的变化对负载有很大的影响。储能系统通过双向直流变换器调节直流母线电压的过程中,占空比会大幅度变化,使变换器呈现严重的非线性,导致母线电压不稳定。针对这一问题,将精确反馈
2018-02-28 14:38:470
Buck变换器的多频率矩阵模型
的开关纹波为另一个变换器的扰动,这种相互作用在某些情况下可能会导致母线电压差频振荡从而影响系统电能质量。然而,传统小信号模型以单个变换器的分析和设计为背景提出,主要用于描述变换器的低频特性。由于这些模型忽略
2018-03-09 13:55:190
直流微电网双向AC/DC变换器并联控制
,通过反馈直流线路的平均电流作为全局变量,并引入积分环节,实现了各变换器的功率精确分配而不受线路参数的影响。通过引入平均输出电压比例积分控制,减小了直流母线电压的偏移。探讨了二次纹波电流对并联系统功率控制的影响,引入带阻滤
2018-03-21 15:03:435
直流微电网母线电压波动分层控制策略
为解决微电网运行时惯性小、模式多、对负荷敏感等问题而引发的母线电压波动现象,从储能系统的配置优化着手,在考虑荷电状态的基础上依据直流母线电压波动幅值进行抑制,提出一种直流微电网母线电压分层协调
2018-04-20 17:08:2018
直流微网中混合储能系统多滞环控制
考虑到超级电容器的响应速度,同时为了节省成本,简化控制,提高可靠性,本文的混合储能系统选用蓄电池接DC-DC变换器、超级电容器直接连直流母线的拓扑结构。在直流微网中不需要考虑电压相角和频率,系统
2018-04-24 15:51:2514
自制车载电源直流变换器
现代电子设备中开关电源的应用日益广泛,给直流变换器带来了更多的使用空间。直流变换器比逆变器成本要低得多,在很多地方都可以用直流变换器替代逆变器,如在汽车上使用手机充电器、卫星接收机、笔记本电脑
2019-02-08 10:14:003976
移相控制零电压零电流开关PWM推挽三电平直流变换器
移相控制零电压零电流开关PWM推挽三电平直流变换器(通讯电源技术是省刊吗)- 移相控制零电压零电流开关PWM推挽三电平直流变换器
2021-08-04 19:50:0610
分布式电源在潮流计算中的一些思考与总结
特性(主要包括电压V、电流I、有功P、无功Q)不同,需要的建模方式也有所不同。1.常见的分布式电源2.分布式电源建模燃料电池是电力电子变换器接口型的潮流计算模型,它在潮流计算里面可以使用pq,pq节点来进行处理。是吗?是pq吗?不是的是pv节点,那么它为什么是pv节点呢?因为它输出的直流电压是
2022-01-07 11:28:310
一种高压直流母线电压的采样电路(二)
目前,在电力系统自动化领域、新能源电动汽车领域以及高压储能领域,经常需要采样、检测高压直流母线电压,一般直流高压可能达到100Vdc~1000Vdc,结合电路成本和采样精度,我们设计人员就需要
2023-04-25 09:35:5610098
IGBT的密勒电容随着直流母线电压的大小怎样变化?
IGBT的密勒电容随着直流母线电压的大小怎样变化? IGBT(Insulated Gate Bipolar Transistor)是一种半导体器件,广泛应用于电力电子领域。 在实际应用中,IGBT
2023-09-18 09:15:53671
什么是分布式直流电源?分布式直流电源的范围 分布式直流电的特性
什么是分布式直流电源?分布式直流电源的范围 分布式直流电的特性 分布式直流电源(Distributed DC Power Supply)是指分布在不同地点的直流电源系统,将电能转换为直流电并提
2023-11-16 11:17:21494
评论
查看更多