高频脉宽调制技术在逆变器中的应用 摘要:将HPWM软开关技术应用于逆变器,在不增加任何辅助电路的基础上实现了功率管的ZVS通断。HPWM软开关方式逆变器电路控制简单,基本不增加功率管的附加应力,且开通损耗大大减少,具有可靠性和效率均高的优点。分析了方案的工作原理以及实现ZVS的条件。同时指出方案存在的问题和解决办法。研制的工作频率50kHz,1000VA的逆变器证明方案的可行性。 关键词:高频脉宽调制;软开关;逆变器;零电压开关
1 引言 由于对逆变器高频化的追求,硬开关所固有的缺陷变得不可容忍:开通和关断损耗大;容性开通问题;二极管反向恢复问题;感性关断问题;硬开关电路的EMI问题。因此,有必要寻求较好的解决方案尽量减少或消除硬开关带来的各种问题。软开关技术是克服以上缺陷的有效办法。最理想的软开通过程是:电压先下降到零后,电流再缓慢上升到通态值,开通损耗近似为零。因功率管开通前电压已下降到零,其结电容上的电压即为零,故解决了容性开通问题,同时也意味着二极管已经截止,其反向恢复过程结束,因此二极管的反向恢复问题亦不复存在。最理想的软关断过程为:电流先下降到零,电压再缓慢上升到断态值,所以关断损耗近似为零。由于功率管关断前电流已下降到零,即线路电感中电流亦为零,所以感性关断问题得以解决。 基于此,本文探讨性地提出了一种用于全桥逆变器的,HPWM控制方式的ZVS软开关技术,如图1所示。其出发点是在尽量不改变硬开关拓扑结构,即尽量不增加或少增加辅助元器件的前提下,有效利用现有电路元器件及功率管的寄生参数,为逆变桥主功率管创造ZVS软开关条件,最大限度地实现ZVS,从而达到减少损耗,降低EMI,提高可靠性的目的。
图1 HPWM控制方式 2 HPWM控制方式下实现ZVS的工作原理 考虑到MOS管输出结电容值的离散性及非线性,每只MOS管并联一小电容,吸收其结电容在内等效为C1-C4,且C1=C2=C3=C4=Ceff;D1-D4为MOS管的体二极管,则HPWM软开关方式在整个输出电压的一个周期内共有12种开关状态。基于正负半周两个桥臂工作的对称性,以输出电压正半周为例,其等效电路模式如图2所示。图3给出了输出电压正半周的一个开关周期内的电路的主要波形,此时S4常通,S2关断。由于载波频率远大于输出电压基波频率,在一个开关周期Ts内近似认为输出电压Uo保持不变,电感电流的相邻开关周期的瞬时极值不变。 (a)模式A (b)模式A1 (c)模式B
(d)模式 B1(e)模式C (f)模式C1 图2 HPWM软开关方式工作状态及电路模式 图3 ZVS方式主要波形 1)模式A[t0,t1] S1和S4导通,电路为+1态输出模式,滤波电感电流线性增加,直到t1时刻S1关断为止。电感电流: iL(t)=(1) 2)模式A1[t1,t2] 在t1时刻,S1关断,电感电流从S1中转移到C1和C3支路,给C1充电,同时C3放电。由于C1、C3的存在,S1为零电压关断。在此很短的时间内,可以认为电感电流近似不变,为一恒流源,则C1两端电压线性上升,C3两端电压线性下降。t2时刻,C3电压下降到零,S3的体二极管D3自然导通,结束电路模式A1。 I1=iL(t1)(2) uc1(t)=t2(3) uc3(t)=Ud-t(4) 3)模式B[t2,t3] D3导通后,开通S3,所以S3为零电压开通。电流由D3向S3转移,此时S3工作于同步整流状态,电流基本上由S3流过,电路处于零态续流状态,电感电流线性减小,直到t3时刻,减小到零。此期间要保证S3实现ZVS,则S1关断和S3开通之间需要死区时间tdead1。 iL(t)=I1-t(5) tdead1>(6) 4)模式B1[t3,t4] 此时加在滤波电感Lf上的电压为-Uo,则其电流开始由零向负向增加,电路处于零态储能状态,S3中的电流也相应由零正向增加,到t4时刻S3关断,结束该模式。电感电流: iL(t)=-t(7) 5)模式C[t4,t5] 与模式A1近似,S3关断,C3充电,C1放电,同理S3为零电压关断。 -I0=iL(t4)(8) uc3(t)=t(9) uc1(t)=Ud-t(10) t5时刻,C1的电压降到零,其体二极管D1自然导通,进入下一电路模式。 6)模式C1[t5,t6] D1导通后,开通S1,则S1为零电压开通。电流由D1向S1转移,S1工作于同步整流状态,电路处于+1态回馈模式,电感电流负向减小,直到零,之后输入电压正向输出给电感储能,回到初始模式A,开始下一开关周期。此期间电感电流: iL(t)=-I0+(11) 同理,要保证S1零电压开通,则S3关断和S1开通之间需要死区时间tdead2,类似式(6),有 tdead2>(12) 多数情况下,有I1>I0,因而一般需tdead2>tdead1。 3 ZVS实现的条件及范围 从以上的工作模式分析可知,由于电容C1及C3的存在,S1及S3容易实现ZVS关断;要实现功率管的零电压开通,必须保证有足够的能量在其开通之前抽去等效并联电容上所储存的电荷,即 LfiL2>CeffUd2+CeffUd2=CeffUd2(13) 在上面的分析中,下管总是容易实现ZVS开通,因为其开通时刻总是在电感电流的瞬时最大值的时刻,即使轻载时电感储存的能量也可以保证其实现零电压开通;对于上管来说,则必须在零态续流模式中电感电流瞬时值由正变负,达到一定负向值,才能保证在下管关断时该电流可以使上管等效并联电容放电,从而实现其零电压开通。此种情况实际为在输出半个周期中,电感电流与输出电压同向,即uo>0,iL>0的情况;当二者反向即iL<0时,则上下管的情况正好互换,上管容易实现ZVS开通,而下管实现ZVS的条件则同样在零态续流模式中要保证电感电流瞬时值反向。对输出电压负半周,上下管实现ZVS的情况与正半周相同。 滤波电感的取值直接影响ZVS实现的范围,也影响到电路的效率。考虑到输出电压半个周期内电路可以等效为一Buck变换器,由此得滤波电感的最大值需满足Lfmax≤。电感值大,电感电流瞬时值变化范围小,ZVS实现的范围减小,也就是说在较大负载情况下,在半波电感电流峰值附近上管难以实现ZVS开通,从而仍然有较大的开通损耗;电感取值减小,其电流瞬时值脉动变大,则ZVS实现的范围加大,开通损耗可以减小,但此时由于整个输出周期内电感上的瞬时电流的高频脉动很大,因而磁芯的磁滞及涡流损耗增加。所以,电感的取值、ZVS实现的范围及电路的效率之间需根据具体情况适当折衷。 在实际应用中须做以下说明。 1)如考虑逆变器负载功率因数较大的情况,则uo,iL在整个周期大部分时间内为同向,即有tdead2>tdead1成立。为充分保证上管软开关的实现,则可以考虑在下管驱动附加加速关断措施,如采用电阻二极管网络,以适当增加下管关断到上管开通之间的死区时间。 2)由上述可知,由于要保证ZVS的实现,则滤波电感上必然存在较大的电流脉动,因而电感的磁芯损耗比较大,实际应用须选用电阻率高、高频损耗小的磁芯材料。 3)同理,由于ZVS实现的范围与电感磁芯损耗的矛盾,在负载范围较大的情况下,很难折衷得到较好的效果,因此该方式只适用于较小功率的应用场合,而应用于较大功率场合时,则可以考虑用相同功率的模块并联。 4 实验波形和结语 图4是上下功率管在实现ZVS时的驱动电压与相应漏源电压波形。由图4可以看出,上下管均很好地实现了零电压开关。
(a)上管
(b)下管 图4 逆变器功率管驱动(上曲线)与漏源电压(下曲线) 图5是空载输出电压与电感电流。图6是阻性满载输出电压及电感电流。空载时由于电感上的电流在半 个 周 期 内 均 可 以 过 零 , 因 而 此 时 功 率 管 可 以 较 好 地 实 现 软 开 关 ; 而 满 载 时 电 感 电 流 瞬 时 值 过 零 的 范 围 明 显 减 少 , 此 时 上?很 难 实 现 软 开 通 。 要 进 一 步 确 定 电 感 取 值 与 负 载 、 ZVS实 现 的 范 围 以 及 电 路 效 率 之 间 的 关 系 除 了 理 论 分 析 外 , 也 还 需 要 进 行 大 量 的 实 验 。 图 7为 逆 变 器 的 效 率 曲 线 , 阻 性 满 载 的 输 出 效 率 约 为 92% 。
图5 空载输出电压与电感电流
图6 阻性满载输出电压及电感电流 图7 逆变器的效率 |
高频脉宽调制技术在逆变器中的应用
- 逆变器(200798)
相关推荐
555脉宽调制
本帖最后由 gk320830 于 2015-3-4 13:18 编辑
555产生方波后转化为锯齿波,实现脉宽调制。以此调制0-5v模拟电压,脉宽调制使用占空0-100%。有大侠设计过此类电路么,求用proteus的图
2014-12-30 15:34:31
555脉宽调制锯齿波电压值
555产生方波后转化为锯齿波,实现脉宽调制。以此调制0-5v模拟电压,脉宽调制使用占空0-100%。有大侠设计过此类电路么,求用proteus的图,,,下图是我画的图!锯齿波的电压变化只在3左右浮动,,想请问参数我设置的不好,大家解释下
2014-12-30 15:48:09
脉宽调制信号是如何创建的?
本文将解释脉宽调制 (PWM) 信号是如何创建的,以及说明您听到的是音频频率而非PWM波形的开关频率。本文将详细说明输出PWM波形为什么比输出线性波形效率高很多,还将说明为什么某些D类放大器要求LC过滤器,而某些则不需要。
2021-06-08 06:56:02
逆变器的相关资料推荐
芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、...
2021-11-16 07:02:53
高频逆变器的选型
的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波高频逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。
2009-08-17 16:04:38
PWM脉宽调制特点与使用方法
PWM—脉宽调制PWM模块可以在GPIO上产生脉宽调制信号。 该模块实现了一个上行或上下计数器,具有四个PWM通道,驱动分配的gpio。三个PWM模块可以提供多达12个PWM通道与单独的频率控制组
2022-01-12 06:55:34
SPWM正弦脉宽调制介绍
改善法。分类: 分为两阶式和三阶式两种。(“阶”指的是PWM式逆变器输出电压在一个周期内的电压电平数) 当阶数为3时,把输出电压基波半个周期内的脉冲数称为PWM逆变电路的脉冲数,在三相桥式逆变电路中,此脉冲数就是在基波一个周期内,同一个逆变开关的开通次数,他等于载波频率与基波频率(调制波频率)之比。载
2021-11-15 08:18:34
SPWM正弦脉宽调制的相关资料分享
为中小型逆变器的发展起了重要的推动作用。由于大功率电力电子装置的结构复杂,若直接对装置进行实验,且代价高费时费力,故在研制过程中需要借助计算机仿真技术,对装置的运行机理与特性,控制方法的有效性进行试验,以预测...
2021-11-16 07:29:39
SPWM波调制技术
1 SPWM波调制技术 逆变电路的控制方式主要是采用SPWM(正弦脉宽调制技术),IR2104控制开关管的通断来实现正弦调制,SPWM的基本思路是将一个正弦波按等宽间距分成N等份,对...
2021-07-26 06:54:31
什么是脉宽调制(PWM) 精选资料分享
脉宽调制(PWM)脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。模拟电路模拟信号的值可以连续变化,其时
2021-07-23 07:26:50
全桥逆变器在UPS、电机调速领域的应用
功率管均工作于输出频率,开关损耗虽小,却产生了难以滤出的低次谐波;而采用脉宽调制时,所有功率管均工作于高频(远大于输出频率),桥臂间的输出电压含有易于滤出的高次谐波,但由于功率管工作在高频下,因此开关损...
2021-09-03 08:40:16
当系统调制度大于1的时候会对控制系统产生什么影响呢
在SVPWM调制模式中,我们大部分情况讨论的都是调制度小于等于1的情况。那当系统调制度大于1的时候,会对控制系统产生什么影响呢?这就是过调制的内容。在脉宽调制技术发展过程中,空间电压矢量调制技术
2021-08-27 08:12:00
浅析正弦脉宽调制技术SPWM
正弦脉宽调制技术SPWM。SPWM有若干种变形,比如注入3次谐波等。SPWM在通用变频器中的地位处于衰退期,但在高压变频器领域内仍是主导地位。在高压变频器领域内,硬件拓扑结构多采用二极管(或电容)嵌
2021-09-03 08:11:03
空间矢量脉宽调制技术
PWM技术作为电力电子装置的核心技术,被广泛的应用于变频调速电机传动中,电机控制的最终目的是产生圆形旋转磁场,从而产生恒定的电磁转矩。在众PWM调制方法中,空间矢量脉宽调制(SVPWM)因其宜于
2018-10-29 16:35:49
风力发电系统正弦波逆变器设计
纹波。逆变器功率开关管采用了RCVD缓冲电路,确保逆变桥安全工作。控制部分采用集成脉宽调制芯片SG3524和正弦函数发生芯片ICL8038实现正弦波脉宽调制(SPWM),简单可靠、易于调试。实验样机
2014-11-06 10:19:33
脉宽调制(PWM)技术习题试题
脉宽调制(PWM)技术 填空题: 1.PWM控制就是对脉冲的________进行调制的技术;直流斩波电路得到的PWM波是________,SPWM波得到的是________。 2.PWM逆变电路也可分
2009-01-12 11:51:4376
空间矢量脉宽调制技术的仿真研究
空间矢量脉宽调制( SVPWM)是一种新型的PWM方法,文章介绍了其基本原理,提出了在Matlab /Sim2ulink环境下用S函数实现电压型空间矢量PWM逆变器的方法,详细描述了仿真模型的设计过程和编程
2009-05-01 09:56:1033
空间矢量脉宽调制原理及算法分析
空间矢量脉宽调制原理及算法分析:阐明了三相电压型逆变器空间矢量脉宽调制(SV PWM ) 基本原理, 给出了两种SV PWM 算法, 即SV PWM 常规算法和快速算法, 通过理论和仿真分析证明了
2009-06-08 13:15:0189
低成本逆变器正弦脉宽调制方法研究
本文采用一种低成本逆变器实现三相交流异步电机正弦脉宽调制,通过简化传统逆变电路结构,控制产品的生产成本,并在分析三相交流电机和两相电机结构和工作原理的基础上
2009-08-29 11:45:2775
脉宽调制的基本原理及其应用实例
脉宽调制的基本原理及其应用实例:脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中
2010-01-10 12:11:0992
脉宽调制整流电路介绍
脉宽调制整流技术具有非常广阔的应用前景。从功率器件,主电路拓朴和控制方法三个方面对其进行了详细的介绍,并对其未来发展进行了预测。关键词:脉宽调制整流器;功率
2010-01-10 12:11:4655
正弦脉宽调制基理
正弦脉宽调制(SPWM)波的基本要素
摘要:本文以电工学正弦理论为基础;以经典的自然采样法为依托;以电子变流技术为研究对象,全面阐述了SPWM波的基本特征与个性,
2010-03-15 13:54:1152
什么是PWM(脉宽调制)
什么是PWM(脉宽调制)
PWM(Pulse Width Modulation)——脉宽调制,是一种开关式稳压电源应用,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。
2009-04-10 12:23:1714990
单相正弦脉宽调制逆变器的设计
单相正弦脉宽调制逆变器的设计
摘要:论述了单相正弦波逆变器的工作原理,介绍了SG3524的功能及产生SPWM波的方法,对逆变
2009-07-14 08:15:253089
级联型多电平逆变器随机脉宽调制的仿真研究
本文在级联型多电平逆变电路中,运用随机脉宽控制方案,使整个系统兼备多电平变频器和随机脉宽调制技术所具有的优点,并通过MATLAB仿真,研究了固定开关频率的脉宽调制技术分补作用于多电平逆变器时的不同特性,从而体现了随机脉宽调制技术在谐波抑制方面的优越性。
2016-05-11 14:54:565
空间矢量脉宽调制(SVPWM)技术
PWM技术作为电力电子装置的核心技术,被广泛的应用于变频调速电机传动中,电机控制的最终目的是产生圆形旋转磁场,从而产生恒定的电磁转矩。在众PWM调制方法中,空间矢量脉宽调制(SVPWM)因其宜于数字控制器实现、输出电流波形好且直流侧电压利用率高等优点被广泛应用于两电平电压逆变器的控制中。
2017-02-10 05:45:048571
双极性双调制波高频链逆变器设计实现
的体积和重量,克服了低频逆变技术的缺点,显著提高了逆变器的特性。 双向电压型高频链逆变器存在一个固有的缺陷,即采用传统PWM技术的周波变换器换流时漏感能量会引起电压过冲。在不增加拓扑复杂性的情况下,采用合理的调制方法可解
2017-10-20 15:35:054
高频脉宽调制技术运用在逆变器中的设计解析
由于对逆变器高频化的追求,硬开关所固有的缺陷变得不可容忍:开通和关断损耗大;容性开通问题;二极管反向恢复问题;感性关断问题;硬开关电路的EMI问题。因此,有必要寻求较好的解决方案尽量减少或消除硬开关
2017-11-17 11:21:355
脉宽调制(PWM)技术-教案
)指脉宽调制技术:通过对一系列脉冲的宽度进行调制,等效出所需要的波形(含形状和幅值)。 说明: PWM的思想源于通信技术,全控型器件的发展促进了PWM技术的应用和完善; PWM技术在逆变电路中的成功
2017-11-27 16:38:4910
一款基于脉宽调制芯片TL494的微型车载逆变器设计电路
针对汽车内部直流电源不能用于交流用电器的问题,设计了一款基于脉宽调制芯片TL494的微型车载逆变器。该逆变器采用DC-DC变换和DC-AC逆变两级结构,前级完成直流升压,后级选择脉宽调制(PWM
2017-12-05 11:32:4815148
电流谐波优化的混合脉宽调制策略
技术( CHMPWM)是优化同步调制的一种,它以电机电流谐波整体最优为目标进行调制,有助于高性能电流闭环控制的实现,近年来受到广泛关注。对基于电流谐波优化的混合脉宽调制策略展开研究,首先分析CHMPWM的开关角求解方法及不同
2018-01-02 18:08:242
多输入端口的多电平高频逆变器
提出一种新型的可实现多端口输入的多电平高频逆变器。该逆变器由交错并联Buck-Boost全桥单元级联而成,通过简单的脉宽调制(PWM)即可实现多电平输出,其输出频率与开关频率一致,可应用于高频交流
2018-03-14 15:08:270
高频逆变器后级电路图大全(四款高频逆变器后级电路图)
高频逆变器通过高频DC/AC变换技术,将低压直流电逆变为高频低压交流电,然后经过高频变压器升压后,再经过高频整流滤波电路整流成通常均在300V以上的高压直流电目前高频逆变器在工业领域领域一等等到普遍运用。本文主要介绍了四款高频逆变器后级电路。
2018-03-22 09:03:5757497
关于四桥臂逆变器SPWM和SVPWM的归一化研究
针对四桥臂逆变器常规空间矢量脉宽调制( SVPWM)需进行坐标变换的问题,对四桥臂逆变器的SVPWM和正弦脉宽调制(SPWM)两种调制技术进行了分析,给出了一种快速数字化三维(3D) SVPWM算法,无需坐标变换,节约了计算时间。
2018-04-05 19:56:319
高频逆变器特性_高频逆变器的优缺点
高频逆变器采用的是体积小,重量轻的高频磁芯材料,从而大大提高了电路的功率密度,使得逆变电源的空载损耗很小,逆变效率得到了提高。通常高频逆变器峰值转换效率达到90%以上。但是其也有显著缺点,高频逆变器不能接满负荷的感性负载,并且过载能力差。
2019-11-05 15:00:499633
一种由TL494为控制核心的脉宽调制技术
随着电力电子技术的发展,脉宽调制(Pulse Width Modulation,PWM)技术的应用日益引起人们的重视。本文介绍了一种由TL494为控制核心的脉宽调制技术,并将其应用于直流电动机控制系统。分析了该系统的工作原理、实现电路以及PWM控制芯片的结构和具体应用。
2021-02-12 17:51:003822
脉宽调制DC/DC全桥变换器软开关技术的研究
脉宽调制DC/DC全桥变换器软开关技术的研究(通信电源技术期刊几号发行)-脉宽调制DC/DC全桥变换器软开关技术的研究
2021-08-31 19:12:5025
高频逆变器和工频逆变器有哪些区别
逆变器是将直流电(DC)转换为交流电(AC)的设备,从而满足交流负载的用电需求。按拓扑结构,逆变器可分为高频逆变器和工频逆变器。 高频逆变器 高频逆变器首先通过高频DC/DC变换技术,将低压
2021-09-11 10:13:392586
同步式SPWM两电平正弦脉宽调制逆变器(全波三角波)——正弦波为调制波(双重傅里叶分析)
SPWM正弦脉宽调制介绍SPWM是调制波为正弦波、载波为三角波或锯齿波的一种脉宽调制法。特点: 原理简单,通用性强,控制和调节性能好,具有先出谐波、调节和稳定输出电压的多种作用,是一种比较好的波形
2021-11-08 14:06:0214
同步式的RPWM调制逆变器——方波作为调制波形
PWM逆变器 单脉冲RPWM逆变器 它是最简单的RPWM调制法,也是PWM脉宽调制的基础。调制电路组成:调制波为方波,载波为三角波,通过将两者进行比较的方式产生单脉冲的脉宽调制信号。调制比较点:三角
2023-03-01 10:20:360
PWM脉宽调制信号基础介绍
开关电源、逆变器的Mosfet/IGBT驱动控制中,使用的都是PWM脉宽调制信号;有所不同的是,使用PWM的控制策略不一样,可能用的是SPWM,或者用的是SVPWM,或者其他的控制策略。
2023-03-23 16:08:481562
高频逆变器和工频逆变器有哪些区别
逆变器是将直流电(DC)转换为交流电(AC)的设备,从而满足交流负载的用电需求。按拓扑结构,逆变器可分为高频逆变器和工频逆变器。高频逆变器高频逆变器首先通过高频DC/DC变换技术,将低压直流电逆变为
2021-09-11 10:15:582133
正弦脉宽调制原理是怎样的 正弦脉宽调制控制的方法有哪些
正弦脉宽调制原理是怎样的 正弦脉宽调制控制的方法有哪些 正弦脉宽调制(PWM)是一种常用的电子技术,用于控制模拟信号的大小和形状。在正弦脉宽调制中,一个固定频率的正弦波(称为载波)的宽度根据
2024-02-06 14:41:24284
评论
查看更多