摘要:综述了三相功率因数校正电路发展现状,并对典型拓扑进行分析比较。 关键词:三相整流器;谐波;功率因数校正
在三相电路中,三相电流总共有3个自由度,而三相单开关PFC中只使用了1只开关管对电流进行控制,加上三相电流之和为零这个条件,最多只能对2个自由度的量进行控制。所以可以通过增加1只开关管来对三相电流进行控制。图23的电路中,用2只串联的开关管代替图8上的单管,并在输入端用3个Y型接法的电容来构造浮动中点,这个中点与两只串联开关管的中点相联[14]。该电路Boost电感上的电流也是工作在DCM下,与图8电路不同之处是:图8中的3个Boost电感是同时充电或放电的,而图23电路中电压值最高相的Boost电感与其余两相上的Boost电感充电或放电在时间上是错开的,各相的电流波形如图24所示。这样工作的好处是:在电感放电起始的一段时间里输出电压全部参与电感放电,而图8电路中电感放电时输出电压是被分成两部分分别参与不同的电感放电的〔由式(2),(3)可见〕,这就使电感放电时间缩短,即缩短了电感电流平均值与输入电压瞬时值的非线性阶段,可减小输入电流的THD。在较小的输出电压下就可以获得比较小的THD。此外,Y型接法的3个电容可以在一定程度上减小低次电流谐波[14]。电路的不足之处是:电路工作在DCM下,THD仍比较大。这种电路己在空调器中使用[15]。
三相功率因数校正(PFC)技术的综述(2)
图26中的电路通过输入端Y型接法的3个电容构成的中点与两只串联的开关中点和两个串联输出电容的中点相联接构成三电平电路[17]。电路可以工作在CCM或DCM方式下。文献[17]中提出一种工作在CCM下的控制方法。这种控制方法是通过开关S1和S2分别控制正向电压最大相和负向电压最大相的电流来实现的。图26中同时给出了这种控制方法的控制框图。在电路工作时开关管所承受的最大电压只有输出电压的一半,这就可以选择耐压参数小而开关速度快的半导体开关器件(如MOSFET)以提高开关频率。同时电路工作在CCM下,THD较小,前端的EMI滤波器可以设计得比较小。缺点是需要检测的控制量比较多,控制比较复杂。文献[18]中提出一种电路工作在DCM与CCM临界情况下的控制方法。由于电路工作在DCM下,需要较大EMI滤波器。为了进一步减小输入电流的THD值,从而减小EMI滤波器,可以通过两个双开关三电平电路并联的方法来达到这个目的,并联电路如图27所示[19]。这种交错并联方法与三相单开关PFC电路的交错并联思想是一致的。三相单开关PFC交错并联(图18)与三相双开关PFC交错并联(图27)的THD在不同的输入电压的比较如图28所示[19],效率比较如图29所示[19]。 文献[20]和文献[21]分别提出了一种含三相隔离变压器接口(IFT)的三相Buck型和Boost型的PFC电路,如图30及图31所示。基本思想是引入了一个IFT,其输出端电流为输入端电流iN的1/3,在此条件下,输入相电流iA,iB,iC和整流桥输出电流iP,iQ存在一一映射关系。整流桥之后是两个Buck或BoostPFC电路的串联。以图30为例,在Va>0>Vc>Vb时上桥臂的D1和下桥臂的D5导通 iX=iP;iY=iQ;iZ=0 iA=iX-iX′;iB=iY-iY′;iC=iZ-iZ′(5)
iN=iP-iQ(7) 由式(5)、(6)、(7)可以得出iP,iQ与iA,iB,iC的关系 iP=2iA+iB;iQ=-(iA+2iB)(8) 在这时(Va>0>Vc>Vb)iA,iB分别为正的最大电流和负的最大电流。在整个周期内式(8)可写成 iP=2i+max+i-max;iQ=-(i+max+2i-max) 所以只要iP,iQ的参考iP*,iQ*与iA,iB,iC的参考iA*,iB*,iC*满足 iP*=2i*+max+i*-max;iQ*=-(i*+max+2i*-max) 就可以通过控制iP,iQ来实现对三相输入电流的控制。由于电路等效成两个单相PFC串联,因而可采用单相PFC的控制技术,使iP,iQ跟随电流给定iP*,iQ*,根据映射关系,输入电流iA,iB,iC也将跟随给定电流iA*,iB*,iC*,从而可实现功率因数为1。这种电路的优点是开关少,控制简单,可采用任何单相PFC的技术;缺点是需要一个容量相当大的IFT(约大于输入总功率的20%),由于IFT工作在低频,这必然增加变换器的成本和体积。 6三相三开关PFC电路 三相三开关PFC电路如图32所示,其中开关S1,S2,S3是双向开关。由于电路的对称性,电容中点电位VM与电网中点的电位近似相同,因而通过双向开关S1、S2、S3可分别控制对应相上的电流。开关合上时对应相上的电流幅值增大,开关断开时对应桥臂上的二极管导通(电流为正时,上臂二极管导通;电流为负时,下臂二极管导通),在输出电压的作用下Boost电感上的电流减小,从而实现对电流的控制。这种电路还有一些类似的变形电路如图33到图36所示。这些电路可以采用滞环控制或空间矢量法控制。另外有些文献提出让对应相上的开关在该相电压正向过零和负向过零时开始各导通30°,其余时间开关关断,这样来实现功率因数校正[22]。这样控制的优点是控制简单,另外开关频率只是网侧开关频率的2倍,因而可以选用频率比较低的开关器件,系统成本较低。但是这样控制方法下THD比较大,Boost电感值要取得比较大。在文献[23]和文献[24]中提出的对三相三开关及其类似电路的控制方法下,可以把这些电路分成两类:一类是两个单相Boost电路串联起来的如图32、图33、图34,这些电路都有两个串联在一起的输出电容。另一类是两个单相Boost电路并联,如图35、图36所示,这些电路只有一个输出直流电容。文献中提出的控制方法是:在一个网侧电压周期的360°内,选择一个60°区域,如Va>Vb>0,Vc<0时让Sb合上。这时电路就可以等效成两个单相Boost电路串联或并联。这样就可以用单相PFC的控制技术对电路进行控制。这种控制方法与滞环控制相比有个优点就是在任何时刻只有2只开关管是工作在高频情况下,因而损耗较小。但这种控制方法要三相解码电路来选择工作区。另外,在Boost电感放在直流侧时,交流侧有直通短路危险。 图32中的双向开关用1只MOSFET器件和4只整流二极管组成的整流桥相联接构成的双向开关来
7三相四开关PFC电路 三相四开关PFC电路如图38所示[26]。该电路与半臂控制电路(只对整流桥上半臂或下半臂进行控制,而另外半臂则使用整流二极管器件)相比,只是增加了一桥臂(由图中S4与D4组成)和接在输入侧用来构造中点电压的3个Y型接法R-L电路。在电压的正半周通过可控的半臂(S1,S2,S3)进行控制,而在负半周则通过第4桥臂(S4,D4)来控制。该电路与六开关整流器相比没有直通短路危险,而且少用2只开关。但是这种电路电流正负半波不对称,电流存在偶次谐波。文献[26]中通过两个模块并联的方法,一个模块上半臂可控,另一个模块下半臂可控,这样可以使总的输入电流正负半波对称,从而消除了电流的偶次谐波。电路图如图39所示。 8三相PFC近年研究热点 三相PFC电路可以使输入电流近似正弦波,通过控制使输出电压不会因输入电压波动而波动,与
1)新颖的三相PFC电路拓扑结构的研究。 2)三电平、交错并联等技术以减小输入谐波和EMI滤波器的研究。 3)软开关技术在三相PFC电路中的应用。 4)三相单级PFC电路的研究。 参考文献 [1]S.Y.R.Hui,H.Chung,Y.K.E.Ho,Y.S.Lee.Modular DevelopmentofSingle?Stage3?PhasePFCUsingSingle?PhaseStep?DownConverters[C].IEEEPESC1998:776-781. [2]RajapandianAyyanar,NedMohan,JianSun.Single?Stage Three?PhasePower?Factor?CorrectionCircuitUsingThreeIsolatedSingle?PhaseSEPICConvertersOperatinginCCM[C].IEEEPESC2000. [3]G.Spiazzi,F.C.Lee.ImplementationofSingle?Phase BoostPowerFactorCorrectionCircuitsinThree?PhaseApplications[C].20thInternationalConferenceon,Volume:1,1994:250-255. [4]TognoliniM.,RuferA.?Ch.ADSPbasedControlfora SymmetricalThree?PhaseTwo?SwitchPFC?PowerSupplyforVariableOutputVoltage[C].IEEEPESC1996:1588-1594. [5]A.R.PRASAD,P.D.ZIOGAS,S.MANIAS.AnActive PowerFactorCorrectionTechniqueForThree?PhaseDiodeRectifiers[C].IEEEPESC1989:58-66. [6]徐德鸿.三相高功率因数整流器的发展与现状[C],第十 三届中国国际电源新技术研讨会论文集.昆明,1994:126-133. [7]QihongHuang,FredC.Lee.HarmonicReductionInA Single?Switch,Three?PhaseBoostRectifierWithHighOrderHarmonicInjectedPWM[C].PESC1996. [8]YungtaekJang,MilanM.Jovanovic.ANewInput?Voltage FeedforwardHarmonic?InjectionTechniqueWithNonlinearGainControlForSingle?Switch,Three?Phase,DCMBoostRectifiers[C].IEEEPESC1999. [9]DomingoS.L.Simonetti,JavierSebastian,JavierUceda. Single?SwitchThree?PhasePowerFactorPreregulatorUnderVariableSwitchingFrequencyandDiscontinuousInputCurrent[C].PESC1993. [10]PeterM.Barbosa,FranciscoCanales,FredC.Lee.Design AspectsofParalledThree?PhaseDCMBoostRectifiers[C].PESC1999. [11]EsamIsmail,RobertW.Erickson.ASingleTransistor ThreePhaseResonantSwitchforHighQualityRectification[C].PESC1992. [12]HengchunMao,FredC.Lee,DushanBoroyevich.Review ofHigh?PerformanceThree?PhasePower?FactorCorrectionCircuits[J].IndustrialElectronics,IEEETransactionson,Volume:44Issue:4,Aug.1997:437-446. [13]JohannW.Lokar,HansErtl,FranzC.Zach.ANovel Three?PhaseSingle?SwitchDiscontinuous?ModeAC?DCBuck?BoostConverterwithHigh?QualityInputCurrentWaveformsandIsolatedOutput[J].PowerElectronics,IEEETransactionson,Volume:9Issue:2,March1994:160-172. [14]U.S.PATENTDOCUMENTS5,886,8913/1999[P] YimingJiang,HengchunMao. [15]U.S.PATENTDOCUMENTS5,654,8828/1997[P] HidetoshiKanazawa. [16]U.S.PATENTDOCUMENTS5,946,2038/1999[P] HidetoshiKanazawa. [17]JM.Zhang,Y.C.Ren,DavidM.Xu,F.Zhang,Zhaoming Qian.Three?PhasePartly?DecoupledCCMPFCConverterControlledbyDSP[C].APEC2001. [18]DavidM.Xu,C.Yang,J.H.Kong,ZhaomingQian.Quasi Soft?SwitchingPartlyDecoupledThree?PhasePFCWithApproximateUnityPowerFactor[C].APEC1998. [19]PeterBarbosa,FranciscoCanales,FredLee.Analysis andEvaluationoftheTwo?SwitchThree?LevelBoostRectifier[C].IEEEPESC2001. [20]YasuyukiNISHIDA.ANewSimpleTopologyfor Three?PhaseBuck?ModePFCRectifier[C].APEC1996. [21]YasuyukiNISHIDA,YukikoOHGOE.ASimple Three?PhaseBoostModePFCRectifier.IndustryApplicationsConference[C].Thirty?FirstIASAnnualMeeting,IAS′96.,ConferenceRecordofthe1996IEEE,Volume:2,1996:1056-1061. [22]EwaldoL.M.Mehl,IvoBarbi.DesignOrientedAnalysis ofAHignPowerFactorandLowCostThree-PhaseRectifier[C].IEEEPESC1996:165-170. [23]ChongmingQiao,KeyueM.Smedley.AGeneral Three?PhasePFCControllerPartI.ForRectifierswithaParallel?ConnectedDualBoostTopology[C].IndustryApplicationsConference,1999.Thirty?FourthIASAnnualMeeting.ConferenceRecordofthe1999IEEE,Volume:4,1999:2504-2511. [24]ChongmingQiao,KeyueM.Smedley.AGeneral Three?PhasePFCControllerPartII.ForRectifierswithaParallel?ConnectedDualBoostTopology[C].IndustryApplicationsConference,1999.Thirty?FourthIASAnnualMeeting.ConferenceRecordofthe1999IEEE,Volume:4,1999:2512-2519. [25]JohannW.Kolar,FranzC.Zach.ANovelThree?Phase UtilityInterfaceMinimizingLineCurrentHarmonicsof High?PowerTelecommunicationsRectifierModules[C]. TelecommunicationsEnergyConference,1994.INTELEC′94.,16thInternational,1994:367-374. [26]B.N.Singh,GezaJoos,PraveenJain.Interleaved 3?PhaseAC/DCConvertersBasedona4SwitchTopology[C].IEEEPESC2000. [27]VlatkoVlatkovicandDusanBorojecic.Digital?Signal? Processor?BasedControlofThree?PhaseSpaceVectorModulatedConverters[J].IEEETransactionsonIndustrialElectronics,VOL.41,NO.3,June1994. [28]YiminJiang,HengchunMao,FredC.Lee,andDusan Borojevic.SimpleHighPerformanceThree?PhaseBoostRectifiers[C].PESC1994. |
三相功率因数校正PFC技术的综述(2)
- PFC技术(8735)
相关推荐
从6个问题解析功率因数校正
1、什么是功率因数校正(PFC)? 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因数可以衡量电力被有效利用的程度, 当功率因数
2018-03-28 14:34:5615755
PFC功率因数校正与LDO低压差线性稳压器简介
PFC (功率)变换 LDO(线性稳压器)* 阻抗匹配 == 耦合电路1 LDO低压差线性稳压器(限流过热保护)2 PWM方波发生器占空比 D = τ (tao) \ T(周期)调制深度3 SPWM音频/全波整流后的正弦波信号(脉宽调整)4 PFC功率因数校正
2022-03-02 07:40:37
功率因数的校正
:千瓦时)。但事实上,对于所有不支持功率因数校正 (PFC) 的设备来说,从插座消耗的电能要高得多,得用千伏安时 (kVAh) 来表示。而这之间的成本差异则由公用事业公司慷慨承担了。智能电表即可
2018-09-19 11:30:24
C2000 MCU三相功率因数校正参考设计包括BOM及层图
(MCU) 控制功率级的方法。用于此设计的硬件和软件可帮助您缩短产品上市时间。高功率三相功率因数校正应用中(例如非板载电动汽车充电和电信整流器)使用了 Vienna 整流器电源拓扑。此设计说明
2018-10-24 16:36:45
NCP1608是一款有源功率因数校正(PFC)控制器,专门用作交流 - 直流适配器
NCP1608BOOSTGEVB,NCP1608评估板,100W升压,功率因数校正。 NCP1608是一款有源功率因数校正(PFC)控制器,专门用作交流 - 直流适配器,电子镇流器和其他中等功率离线
2019-10-12 09:06:04
NCP1631控制交错并联功率因数校正器
NCP1631PFCGEVB,NCP1631功率因数校正评估板。 NCP1631是一款用于2相交错功率因数校正预转换器的控制器。交错包括并联两个小阶段代替单个大阶段。这种方法有几个优点,如易于实施,使用较小组件的能力,以及更好的加热分布
2020-06-17 16:37:41
UCC28019有源功率因数校正PFC控制器相关资料分享
UCC28019是德州仪器公司生产的一款有源功率因数校正(PFC)控制器。它为8脚SOIC封装或者PDIP封装。
2021-04-22 06:43:13
pspice升压功率因数校正
各位老师我用pspice10.5仿真基于uc3854的升压功率因数校正,但是输入电流与输入电压相位相差90,这是为何呢?谢谢了。如果给我解决我可以把积分都给你的。
2012-05-03 08:14:05
【功率因数校正(PFC)手册】选择正确的功率因数控制器解决方案
功率因数校正解决方案的选择范围包括无源电路到各种有源电路。因应用的功率水平和其他参数的不同,解决方案也会有所不同。近年来分立半导体元件的发展和更低价格的控制IC的上市,进一步拓宽了有源PFC解决方案
2021-08-03 16:06:57
为什么我们需要功率因素校正PFC?
功率因素校正的好处包含:节省电费增加电力系统容量稳定电流低功率因数即代表低的电力效能,越低的功率因数值代表越高比例的电力在配送网络中耗损,若较低的功率因数没有被校正提升,电力公司除了有效功率外,还要
2022-10-08 11:32:20
什么是功率因数校正 PFC?
系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。 一般状况下, 电子设备没有功率因数校正(Power Factor Correction, PFC)时其PF值约只有0.5。PFC的英文全称
2022-10-08 11:30:07
什么是主动式/被动式功率因数校正(Active/Passive PFC)?
[控制线路及功率型开关式组件(power sine conductor On/Off switch),基本运作原理为调整输入电流波型使其与输入电压波形尽可能相似,功率因数校正值可达近乎100%。 此外主动式
2022-10-08 11:43:45
关于电源的功率因数校正
这些天准备和小伙伴攻一下功率因数校正,但是不知道哪些芯片能够比较好的进行功率因数测量,或者是用哪种方法可以测得功率因数。我们也查阅了一些资料,但是没找到满意的方法,哪位大神指点一下!!
2015-06-17 13:28:34
史上最全PFC(功率因数校正)学习资料推荐
电量(视在功率)的比值。对于国家来说电网节能是个永无休止的话题,近些年对很多类用电器的PF值有了强制要求,未来会更加严格,可想而知PFC技术未来有多么广阔的前景!PFC(功率因数校正)电路可以有效提高开关电源
2017-06-23 19:56:08
基于三相PFC整流器在输入电压不对称时的问题分析
耦合,需要较为复杂的控制算法才能实现,而且它的输出功率大,对电网的污染更加严重,因此三相功率因数校正技术的研究和实现具有重要意义已成为近年来的研究热点。 三相 PFC 整流器的控制主要有半解耦和全解耦
2018-10-10 15:22:08
如何区别主动式功率因数校正?
Factor Correct" 或 "PFC" 这些字眼的产品,都是有功率因数校正功能的。同理,因为主动式的较被动式的功率因数高,厂商没有理由不大书特书一番,所以基本上没说
2022-10-08 11:59:08
无桥功率因数校正转换器
`描述此设计是一种数字控制的无桥 300W 功率因数校正转换器。无桥 PFC 转换器的明显特征是输入端不再需要二极管电桥。这降低了二极管电桥通常发生的功率损失,从而改进了总体系统效率。对于
2015-04-08 15:10:13
有源功率因数校正技术介绍
功率因数校正电路、无桥型功率因数校正电路、低频开关功率因数校正电路)和三相功率因数校正电路原理及控制〔重点介绍了电压型和电流型三相功率因数校正电路数学模型、锁相、PWM、控制技术)。此外,本书还介绍了软
2023-09-19 07:12:10
有源功率因数校正与单级功率因数校正的关系
请问有源功率因数校正与单级功率因数校正有关系吗?在我看来单级功率因数校正是否包括有源功率因数校正技术呢,对不对呢?有人能详细解答一下嘛?
2020-04-19 21:26:10
有源功率因数校正电路和无源功率因数校正电路介绍
的小功率场合。 (2) 有源功率因数校正电路 有源功率因数校正电路如上图所示,PFC部分主要由工作在高频开关状态的开关管和电路组成,一般为boost型拓扑,可实现宽输入电压范围。相比于无源功率因数
2023-04-03 14:37:48
用于AC/DC系统的功率因数校正PFC控制器IC
全球最知名的半导体厂商罗姆(ROHM)株式会社推出了两款用于AC/DC系统的功率因数校正(PFC)控制器IC——BD7690FJ和BD7691FJ,适用于所有需要提高功率因数的产品。这两款芯片采用
2019-04-28 09:55:07
采用FAN4810的500W功率因数校正电路
4采用FAN4810的500W有源功率因数校正电路的电路原理图①500W/PFC电路技术指标 输出功率:500W VMIN=80VAC(RMS) VMAX=264VAC(RMS) 工作效率
2010-12-29 15:28:06
L4981在门机电源功率因数校正中的应用
针对普通开关电源功率因数较低和谐波较大的缺陷,以M981功率因数校正芯片为核心,构建了双级式PFC电源的功率因数校正前级。在选取确定了主电路拓扑结构后,介绍了它的工作原
2008-12-19 01:50:4155
三相功率因数校正的设计考虑
除了一个单相单相功率因素校正(PFC)系统的要求,在三相电源系统上跟踪电压时对电流波形的需要也催生了另一组要求。三个相不仅都需要高功率因数(电流波形必须跟踪电压波
2009-04-27 11:37:5133
基于UC3854的三相单位功率因数校正电路研究
分析了UC3854 控制原理和三相三电平三开关功率因数校正电路特点,并结合UC3854 的原理设计出功率因数校正电路双闭环控制器,给出了仿真设计和结果。关键词:三相三开关三
2009-09-01 09:41:1498
单相有源功率因数校正技术的发展
本文对现有的功率因数校正技术进行了分析和总结。通过软开关技术以及新型高性能的电路拓扑设计,分析了提高AC-DC变换器的转换效率的技术。提出了无桥PFC电路是高性能功率因
2009-10-14 10:40:5441
新型软开关三相高功率因数整流器的研制
新型软开关三相高功率因数整流器的研制【摘 要】 提出了一种三相降压式电容输入多谐振功率因数校正(PFC)电路,并且分析了多谐振PFC的工作原理,采用单相时变简化分析模
2010-03-01 16:25:2334
单级PFC变换器的功率因数校正效果的研究
单级PFC变换器的功率因数校正效果的研究
为了使开关电源的输入电流谐波满足要求,必须加入功率因数校正(PFC)。目前应用得最广泛的是PFC级+DC/DC级的两级方案,它们
2010-04-12 18:04:2734
电荷泵式功率因数校正电子镇流器
电荷泵功率因数校正(CPPFC)电子镇流器由于其良好的功率因数校正性能越来越受到人们的关注。以几种带电荷泵功率因数校正器的电子镇流器为例子,介绍了电荷泵功率因数校正
2010-05-08 08:44:3954
中等容量三相功率因数校正技术的发展
摘要:功率因数仗正(PFC)技术是目前电力电子研究的热点之一。对于不同功率容量的装五,其采用的PFC技术都有各自的特点,文章介绍了当前中等容量(5 -10kVA)三相PFC技术发展的
2010-06-23 11:14:0215
先进的功率因数校正
议程AgendaR26; 引言Introductionh8707; 功率因数校正的基本解决方案Basic solutions for power factor correctionh8707; 要满足的新需求New needs to addressR26; 交错式的功率因数校正In
2010-07-30 10:18:3738
开关电源功率因数校正技术及功率级设计
摘要:本文较详细地分析了普通开关电源功率因数过低的原因及产生的危害,简要分析了各类功率因数校正电路的工作原理及主要优缺点,还介绍了功率因数校正主回路的设计方法。
2010-12-14 12:46:5446
反激式功率因数校正电路的电磁兼容设计
反激式功率因数校正电路的电磁兼容设计
通过反激式功率因数校正电路说明了单级功率因数校正电路中的电磁兼容问题,分析了单级功率因数校正电路中骚扰的产生机
2009-06-30 20:23:29934
一种新颖的功率因数校正芯片的研究
一种新颖的功率因数校正芯片的研究
摘要:介绍了一种新颖的功率因数校正(PFC)芯片。它的主要特点是提高了轻载时的功率因数和改善了电路的
2009-07-06 09:17:39871
带非正弦波电流的新颖数字式功率因数校正技术
带非正弦波电流的新颖数字式功率因数校正技术
摘要:数字式功率因数校正(PFC)技术利用标准的微控制器履行PFC控
2009-07-08 14:24:441051
单极隔离式功率因数校正(PFC)变换器
单极隔离式功率因数校正(PFC)变换器
1引言
现代开关电源的主要发展趋向之一是提高AC/DC变换器输入端功率因数,减少对电网的谐波污染。传统的AC/DC开关变换
2009-07-10 10:07:392759
功率因数校正用电感材料
功率因数校正用电感材料
Inductance Material for Use in PFC
摘 要 : 介 绍 用 于 无 源 和 有 源 功 率 因 数 校 正 中 电 感 材 料 的 特 性 和 选 择 。
2009-07-11 09:04:25887
改进的单级功率因数校正AC/DC变换器的拓扑综述
改进的单级功率因数校正AC/DC变换器的拓扑综述
摘要:单级功率因数校正(简称单级PFC)由于控制电路简单、成本低、功率密度高在中
2009-07-11 13:55:24640
一种新型单级功率因数校正(PFC)变换器
一种新型单级功率因数校正(PFC)变换器
摘要:提出了一种新型的功率因数校正单元(flyback+boost单元)。这种功率因数单
2009-07-14 17:49:32932
单级功率因数校正(PFC)研究的新进展
单级功率因数校正(PFC)研究的新进展
摘要:传统两级功率因数校正(PFC)电路复杂、器件多、功率密度低,效率不是很理
2009-07-14 17:52:481079
Buck型三相功率因数校正技术的发展
Buck型三相功率因数校正技术的发展
摘要:综述了Buck型三相PFC技术近年来的发展概况,特别是其中软开关技术的发展。分析
2009-07-14 17:53:531932
新颖的电流临界导通的功率因数校正芯片的研究
新颖的电流临界导通的功率因数校正芯片的研究
介绍了一种新颖的电流临界导通(DCMboundary)的功率因数校正(PFC)芯片。它的主要特点是提高了高电压输入时的功率
2009-10-29 17:46:18699
无源无损软开关功率因数校正电路的研制
无源无损软开关功率因数校正电路的研制
在开关电源中引入功率因数校正PFC(Power FactorCorrection)技术,一方面使电源输入电流与输入电压波形同相,即使功率因数趋于1
2009-11-05 10:17:251271
IR推出IR115x系列集成式功率因数校正(PFC)IC
国际整流器公司 (International Rectifier,简称IR) 推出 IR115x 系列集成式 ìPFC 功率因数校正 (PFC) IC,适用于多种 AC-DC 应用
2011-03-23 10:34:192112
基于Matlab的高功率因数校正技术的仿真
模拟控制器和数字控制器在单相Boost功率因数校正电路中都可以提高功率因数,消除高次谐波电流和降低总谐波畸变因数(THD),完全的实现了功率因数校正的目的,但是数字控制器在相比于模拟控制器
2011-06-03 11:21:384178
新型三相功率因数校正器的研究
以单相Cuk型变换器合成三相功率因数校正电路为研究对象,将三相交流电分成单相A-B、B-C、C-A进行功率因数校正,运用升压型平均电流控制的功率因数校正思想,解决了常规单相Cuk型有
2011-09-23 14:51:3651
无源功率因数校正电路的原理和应用
本文介绍SIEMENS公司提出的开关电源集成控制器TDA16846无源功率因数校正(PFC)电路原理及其在电视机开关电源中的应用。
2012-10-16 07:50:5488
对于PFC(功率因数校正)你了解多少
引言:PFC(Power Factor Correction)即功率因数校正,主要用来表示电子产品对电能的利用效率。功率因数越高,说明电能的利用效率越高。通过CCC认证的电脑电源,都必须增加PFC
2022-08-11 09:13:423777
将 BCM 功率因数校正 (PFC) 控制器用于 100W 照明系统的 LED 应用设计指南
将 BCM 功率因数校正 (PFC) 控制器用于 100W 照明系统的 LED 应用设计指南
2022-11-14 21:08:292
使用 BCM 功率因数校正 (PFC) 控制器用于 200W 照明系统的 LED 应用设计指南
使用 BCM 功率因数校正 (PFC) 控制器用于 200W 照明系统的 LED 应用设计指南
2022-11-15 19:57:590
美浦森推荐PFC 功率因数校正方案
PFC的英文全称为“PowerFactorCorrection”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上
2022-04-29 16:40:55648
什么是功率因数 功率因数校正基础知识
简介 功率因数校正 (PFC) 是客户在选择电源时寻求的功能之一,因为它对设备的整体效率起着巨大的作用。本文档介绍了功率因数校正 (PFC)的基本事实和原理以及管理该功能的法规。它还讨论了常见的原因
2023-10-05 15:56:001056
干货 | 揭秘三相功率因数校正 (PFC) 拓扑结构(内附活动中奖名单)
点击蓝字 关注我们 三相功率因数校正 (PFC) 系统(或也称为有源整流或有源前端系统)正引起极大的关注,近年来需求急剧增加。推动这一趋势的主要因素有两个。本文为系列文章的第一部分,将主要介绍三相
2023-12-16 16:05:01300
评论
查看更多