杨成林,陈敏,徐德鸿 (浙江大学电力电子研究所,浙江杭州310027) 摘要:综述了三相功率因数校正电路发展现状,并对典型拓扑进行分析比较。 关键词:三相整流器;谐波;功率因数校正
1 引言 近20年来电力电子技术得到了飞速的发展,已广泛应用到电力、冶金、化工、煤炭、通讯、家电等领域。电力电子装置多数通过整流器与电力网接口,经典的整流器是由二极管或晶闸管组成的一个非线性电路,在电网中产生大量电流谐波和无功污染了电网,成为电力公害。电力电子装置已成为电网最主要的谐波源之一。我国国家技术监督局在1993年颁布了《电能质量公用电网谐波》标准(GB/T14549-93),国际电工委员会也于1988年对谐波标准IEC555?2进行了修正,另外还制定了IEC61000-3-2标准,其A类标准要求见表1。传统整流器因谐波远远超标而面临前所未有的挑战。 表1 IEC61000-3-2A类标准
抑制电力电子装置产生谐波的方法主要有两种:一是被动方法,即采用无源滤波或有源滤波电路来旁路或滤除谐波;另一种是主动式的方法,即设计新一代高性能整流器,它具有输入电流为正弦波、谐波含量低、功率因数高等特点,即具有功率因数校正功能。近年来功率因数校正(PFC)电路得到了很大的发展,成为电力电子学研究的重要方向之一。 单相功率因数校正技术目前在电路拓扑和控制方面已日趋成熟,而三相整流器的功率大,对电网的污染更大,因此,三相功率因数校正技术近年来成为研究热点。 2 三相六开关PFC电路 六开关三相PFC是由6只功率开关器件组成的三相PWM整流电路,电路如图1所示。每个桥臂由上下2只开关管及与其并联的二极管组成,每相电流可通过桥臂上的这2只开关管进行控制。如A相电压为正时,S4导通使La上电流增大,电感La充电;S4关断时,电流ia通过与S1并联的二极管流向输出端,电流减小。同样A相电压为负时,可通过S1及与S4并联的二极管对电流ia进行控制。在实际中控制电路由电压外环、电流内环及PWM发生器构成。常用的控制方法如图2所示。PWM控制可采用三角波比较法、滞环控制或空间矢量调制法(SVM)[27]。由于三相的电流之和为零,所以只要对其中的两相电流进行控制就足够了。因而在实际应用中,对电压绝对值最大的这一相不进行控制,而只选另外两相进行控制。这样做的好处是减小了开关动作的次数,因而可以减小总的开关损耗。该电路的优点是输入电流的THD小,功率因数为1,输出直流电压低,效率高,能实现功率的双向传递,适用于大功率应用。不足之处是使用开关数目较多,控制复杂,成本高,而且每个桥臂上两只串联开关管存在直通短路的危险,对功率驱动控制的可靠性要求高。为了防止直通短路危险,可以在电路的直流侧串上一只快恢复二极管[28]。
图1 三相六开关PFC电路
图2 三相六开关PFC电路控制图 3 单相PFC组合的三相PFC 由三个单相的PFC电路组合构成三相PFC电路如图3及图4所示[1,2,3]。图3中每个单相PFC后跟随一个隔离型DC/DC变换器。DC/DC变换器的输出并联后向负载供电,该电路由于需3个外加隔离DC/DC变换器,因此成本较高。图4电路是3个单相PFC变换器在输出端直接并联而成的。每个单相PFC的控制可采用平均电流控制法、峰值电流控制法或固定导通时间控制法。单相PFC组合成三相PFC的技术优势是:可以利用比较成熟的单相PFC技术,而且电路由3个单相PFC同时供电,如果某一相出现故障,其余两相仍能继续向负载供电,电路具有冗余特性。与三相六开关PFC相比,开关器件少,没有直通问题,控制可沿用单相PFC成熟的控制技术。但是这种电路由3个单相PFC组成,使用的元器件比较多。图4电路中3个单相PFC之间存在相互影响,即使加入隔离电感和隔离二极管后也不能完全消除这种影响。电路的效率和输入电流THD指标有所下降,不适合于大功率应用。
图3 由三个单相PFC组成三相PFC电路1
图4 由三个单相PFC组成三相PFC电路2 图5是通过工频变压器把三相电压变换成2个单相,这两相的输出电压幅值相同,相位差90°。然后用2个单相PFC电路来实现三相PFC的功能[4]。与图3及图4相比,这种电路少用一个单相PFC模块。变压器可以实现PFC电路与输入网侧间的隔离作用。而且通过变压器变比的设计,可以调整PFC的输入电压。但使用变压器增大了系统的体积和重量。
图5 由2个单相PFC组成三相PFC电路 三相到二相变压器的Scott和Leblanc两种绕法分别如图6及图7所示。在Scott绕法中,N2=N1(N1,N2变压器所绕线圈的匝数)。变压器的输入输出电压向量如图6所示。在Lebanc绕法中,N1=N2,x=N1/3=N2/。电压VS1,VS2的向量图如图7所示。变压器的这两种绕法都能保证输入侧三相电流的平衡。
图6 变压器的Scott绕法
图7 变压器的Leblanc绕法 4 三相单开关PFC电路 由于无论是三相六开关PFC还是由单相PFC组成的三相PFC成本都比较高,所以人们一直在寻找更简单有效的三相PFC拓扑。于是文献[5]中提出了三相单开关PFC拓扑结构。三相单开关PFC电路及其控制框图如图8所示。三相单开关PFC电路可以看成是单相电流断续(DCM)PFC在三相电路中的延伸[5,6]。控制中只有一个电压环,输出电压与参考电压的误差经过放大后与三角波比较来控制开关的动作。三相单开关PFC电路开关频率远高于电网频率,在一个开关周期内,输入电压近似不变。在开关导通期间,加在三个Boost电感上的电压分别为各相此时的相电压(近似不变),电感电流线性上升。在这期间各相的电流峰值正比于对应各相相电压瞬时值。但在开关关断时,加在输入各电感上的电压由输出电压与此时的相电压瞬时值决定,因而此时电感上的电流平均值与输入电压瞬时值不再满足线性关系,电流也就产生了畸变。
图8 三相单开关PFC电路及其控制电路
图9 Boost电感上的电流波形 设三相单开关PFC的主要参数:Vo为输出直流电压,D为开关占空比,fs为开关频率,L为Boost电感值,M为升压比,定义为M=,Vm为输入相电压的峰值。三相单开关PFC电路工作时三个Boost电感上的电流波形如图9所示(设Vc<0,Va>Vb>0)。在一个开关周期内可以分成四个阶段。在t1期间开关导通,电流ia,ib,ic线性增加, = (1) t2期间开关关断,ia,ib,ic在输出电压和相电压的共同作用下开始减小,设Ipeak,a、Ipeak,b、Ipeak,c为该开关周期内ia,ib,ic的最大值, =+ (2) ib减小到零,t2期间结束,开始t3期间,这时 =+ (3) 最后,ia,ic同时回到零,t3阶段结束。在t4期间三个Boost电流保持为零。可求得电感电流的平均值如式(4)所列。 图10给出输入相电流波形与升压比关系。图11是各次谐波幅值与整流输出电压增益M的关系。
图10 输入相电流波形与M关系
图11 各次谐波幅值与M的关系 从上面的分析可知:为了减小网侧输入电流的畸变就要提高输出电压值(输出直流电压高,可以缩短一个开关周期内输入电流平均值与输入电压瞬时值的非线性阶段t2和t3,因而可以减小电流畸变。),但这就增大了开关管承受的电压,也增加了后面DC/DC变换器的电压耐量,也给Boost二极管的选择带来困难。由于电流工作在DCM下,输入侧的电流THD值大,并需要有较大的EMI滤波器。这种电路的优势是:电路简单,仅使用一只开关管,控制容易;由于电路工作在DCM下,Boost二极管Ds不存在反向恢复问题,一般情况下可以不使用吸收电路;开关在零电流下导通,开关开通损耗小;系统成本低。 为了减小输出电压值和输入电流的THD值,可以使用注入谐波的方法来实现开关管的脉宽微调,从而减小电流THD值[7,8]。谐波注入电路如图12所示。谐波注入法主要是通过注入6次谐波来抑制输入电流谐波。6次谐波注入使开关导通比变为
图12 谐波注入法电路图 d(t)=D[1+msin(6ωt+3π/2)](5) 式中:m为调制比,0<m<1。 由于输入电流谐波中五次谐波占主导地位,式(4)中略去5次以上谐波时,三相电流可近似为: Ia=I1sin(ωt)+I5sin(5ωt+π) Ib=I1sin(ωt-)+I5sin(5ωt-)Ic=I1sin(ωt-)+I5sin(5ωt+) 把式(5)代入式(4),并忽略m2和高于7次的谐波就有 ia′=I1sin(ωt)+(I5-mI1)sin(5ωt+π)-mI1sin(7ωt) ib′=I1sin(ωt-)+(I5-mI1)sin(5ωt-)-mI1sin(7ωt-) ic′=I1sin(ωt-)+(I5-mI1)sin(5ωt+)-mI1sin(7ωt-) 由此可见,注入6次谐波时,可以减小5次谐波,但同时也增大了7次谐波。固定开关频率与谐波注入法的THD比较如图13所示。在8kW,800V直流输出时IEC?61000-3-2A类标准与固定开关频率三相单开关PFC与谐波注入法时三相单开关PFC的5,7,11,13次谐波幅值的比较如图14所示。在满足IEC-61000-3-2A类标准时,在不同输出电压下允许的最大功率比较如图15所示。
图13 固定开关频率与谐波注入法时的THD比较
图14 在8kW,800V直流输出时IEC-61000-3-2A类标准与固定开关频率及谐波注入法5,7,11,13次谐波幅值的比较(图中系列1,2,2分别为m=4%时固定开关频率,IEC标准,六次谐波注入)
图15 在满足IEC-61000-3-2A类标准时,在不同输出电压下允许的最大功率比较。 另外一种减小谐波的方法是改变开关频率法[9]。这种方法每当三相Boost电感电流均下降到零时,开关管立即导通,开始下一个开关周期。在这种条件下Boost电感工作在DCM与CCM的临界情况(critical),电感电流波形与升压比M关系分别如图16及图17所示。由于各个时刻输入电压值不同,因而开关频率也不同,即开关是工作在变频情况下。这种方法的优点是:由于开关频率改变,谐波不会集中分布在某个开关频率附近而是分布在某个频率区域范围内。这就减小了谐波的幅值,PFC电路前的EMI滤波器可以设计得比较小。
图16 工作在critical时电感上电流波形
图17 工作在critical时电流波形与M关系 通过两个三相单开关PFC的交错并联(interleaving)的方法也可以减小输入电流的THD值[10]。电路如图18所示。这种并联的思想是让这两个三相单开关PFC电路尽可能工作在接近DCM与CCM临界的情况下,然后两只开关的驱动信号在相位上相错开180°。这样对单个三相单开关PFC电路来说是工作在DCM下,但这两个模块的电流之和有可能是连续的,输入网侧电流的谐波显著减小,电流波形如图19所示。交错并联的好处是:一方面减小了输入电流的THD值,另一方面由于两只开关驱动信号在相位上错开180°,使系统的等效开关频率提高1倍,这可以使EMI滤波器的截止频率提高。这两方面都可以减小EMI滤波器的体积和重量。电路即便不采用任何电流控制方式,这两个三相单开关PFC电路都有较好的均流效果。但是,由于使用两个三相单开关PFC电路模块,会使整个系统的成本提高。另外为了减小两个模块内部相互影响,每个模块还要加一个隔离二极管。
图18 两个三相单开关PFC交错并联电路
图19 两个三相单开关PFC交错并联电路电流示意图 为了减小开关管的电流应力,可用三只开关管取代全桥上半臂或下半臂的整流二极管,另外半臂则不能使用普通整流二极管,而要用快恢复二极管,电路如图20所示[11]。三只开关管用同一个驱动信号,电感电流工作在DCM下。与图8电路相比该电路的优点是:每只开关管的平均电流应力只有图8电路中开关管的1/3,半导体器件的损耗也比较小(因在开关关断时,电流只通过二个半导体器件,而图8电路则通过三个半导体器件)。缺点是:使用了三只开关管和三只快速恢复二极管,成本较高,电路仍工作在DCM下,THD较大。
图20 全桥下半臂用三只开关管取代整流二极管的电路 在提高开关频率进而减小输入滤波器的同时,为了减小开关损耗及EMI,可以通过辅助开关Sa和Lr,Cr组成的谐振支路使主开关管实现零电流关断[12]。电路如图21所示。零电流关断的实现过程是这样的:在主开关S导通期间,Cr通过Lr,S,Sa内部的二极管放电,使Cr电压为上负下正。在开关关断前一段时间,辅助开关Sa先导通,Cr与Lr谐振,将Cr上充好的电能放出。谐振电流经过主开关管的方向与原来主开关管电流方向相反,抵消了主开关管的电流,实现主开关管的零电流关断。
图21 主开关管零电流关断电路 图22是J.W.Kolar等提出的Buck-Boost输出型PFC[13]。这种电路可以认为是反激式单相PFC在三相中的延伸。电路的原理是:开关导通时,电感电流线性上升,开关关断时,电感电流通过变压器向负载释放。电路优点是:输入电流为纯正弦(与图8电路相比,没有输入电流与输入电压的非线性阶段t2,t3),功率因数为1,输出与输入隔离。缺点是:开关的电流应力和电压应力都很大,与单相正激式PFC相同,适合应用在小功率范围。
图22 Buck-Boost型三相PFC电路 |
三相功率因数校正(PFC)技术的综述(1)
- 校正技术(7667)
相关推荐
从6个问题解析功率因数校正
1、什么是功率因数校正(PFC)? 功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因数可以衡量电力被有效利用的程度, 当功率因数
2018-03-28 14:34:5615755
PFC功率因数校正与LDO低压差线性稳压器简介
PFC (功率)变换 LDO(线性稳压器)* 阻抗匹配 == 耦合电路1 LDO低压差线性稳压器(限流过热保护)2 PWM方波发生器占空比 D = τ (tao) \ T(周期)调制深度3 SPWM音频/全波整流后的正弦波信号(脉宽调整)4 PFC功率因数校正
2022-03-02 07:40:37
功率因数的校正
:千瓦时)。但事实上,对于所有不支持功率因数校正 (PFC) 的设备来说,从插座消耗的电能要高得多,得用千伏安时 (kVAh) 来表示。而这之间的成本差异则由公用事业公司慷慨承担了。智能电表即可
2018-09-19 11:30:24
C2000 MCU三相功率因数校正参考设计包括BOM及层图
(MCU) 控制功率级的方法。用于此设计的硬件和软件可帮助您缩短产品上市时间。高功率三相功率因数校正应用中(例如非板载电动汽车充电和电信整流器)使用了 Vienna 整流器电源拓扑。此设计说明
2018-10-24 16:36:45
NCP1608是一款有源功率因数校正(PFC)控制器,专门用作交流 - 直流适配器
NCP1608BOOSTGEVB,NCP1608评估板,100W升压,功率因数校正。 NCP1608是一款有源功率因数校正(PFC)控制器,专门用作交流 - 直流适配器,电子镇流器和其他中等功率离线
2019-10-12 09:06:04
UCC28019有源功率因数校正PFC控制器相关资料分享
UCC28019是德州仪器公司生产的一款有源功率因数校正(PFC)控制器。它为8脚SOIC封装或者PDIP封装。
2021-04-22 06:43:13
pspice升压功率因数校正
各位老师我用pspice10.5仿真基于uc3854的升压功率因数校正,但是输入电流与输入电压相位相差90,这是为何呢?谢谢了。如果给我解决我可以把积分都给你的。
2012-05-03 08:14:05
【功率因数校正(PFC)手册】选择正确的功率因数控制器解决方案
功率因数校正解决方案的选择范围包括无源电路到各种有源电路。因应用的功率水平和其他参数的不同,解决方案也会有所不同。近年来分立半导体元件的发展和更低价格的控制IC的上市,进一步拓宽了有源PFC解决方案
2021-08-03 16:06:57
为什么我们需要功率因素校正PFC?
功率因素校正的好处包含:节省电费增加电力系统容量稳定电流低功率因数即代表低的电力效能,越低的功率因数值代表越高比例的电力在配送网络中耗损,若较低的功率因数没有被校正提升,电力公司除了有效功率外,还要
2022-10-08 11:32:20
什么是功率因数校正 PFC?
系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。 一般状况下, 电子设备没有功率因数校正(Power Factor Correction, PFC)时其PF值约只有0.5。PFC的英文全称
2022-10-08 11:30:07
什么是主动式/被动式功率因数校正(Active/Passive PFC)?
[控制线路及功率型开关式组件(power sine conductor On/Off switch),基本运作原理为调整输入电流波型使其与输入电压波形尽可能相似,功率因数校正值可达近乎100%。 此外主动式
2022-10-08 11:43:45
关于电源的功率因数校正
这些天准备和小伙伴攻一下功率因数校正,但是不知道哪些芯片能够比较好的进行功率因数测量,或者是用哪种方法可以测得功率因数。我们也查阅了一些资料,但是没找到满意的方法,哪位大神指点一下!!
2015-06-17 13:28:34
史上最全PFC(功率因数校正)学习资料推荐
电量(视在功率)的比值。对于国家来说电网节能是个永无休止的话题,近些年对很多类用电器的PF值有了强制要求,未来会更加严格,可想而知PFC技术未来有多么广阔的前景!PFC(功率因数校正)电路可以有效提高开关电源
2017-06-23 19:56:08
基于三相PFC整流器在输入电压不对称时的问题分析
耦合,需要较为复杂的控制算法才能实现,而且它的输出功率大,对电网的污染更加严重,因此三相功率因数校正技术的研究和实现具有重要意义已成为近年来的研究热点。 三相 PFC 整流器的控制主要有半解耦和全解耦
2018-10-10 15:22:08
如何区别主动式功率因数校正?
:1.看文字叙述:准确率90%以上。因为功率因数校正是很有用的功能,厂商当然希望能藉此吸引消费者,所以有此功能的必定会用文字描述。所以有看到"功率因数校正"、"Power
2022-10-08 11:59:08
无桥功率因数校正转换器
`描述此设计是一种数字控制的无桥 300W 功率因数校正转换器。无桥 PFC 转换器的明显特征是输入端不再需要二极管电桥。这降低了二极管电桥通常发生的功率损失,从而改进了总体系统效率。对于
2015-04-08 15:10:13
有源功率因数校正技术介绍
功率因数校正电路、无桥型功率因数校正电路、低频开关功率因数校正电路)和三相功率因数校正电路原理及控制〔重点介绍了电压型和电流型三相功率因数校正电路数学模型、锁相、PWM、控制技术)。此外,本书还介绍了软
2023-09-19 07:12:10
有源功率因数校正与单级功率因数校正的关系
请问有源功率因数校正与单级功率因数校正有关系吗?在我看来单级功率因数校正是否包括有源功率因数校正技术呢,对不对呢?有人能详细解答一下嘛?
2020-04-19 21:26:10
有源功率因数校正电路和无源功率因数校正电路介绍
校正,有源PFC输入的电流波形畸变小,THDi一般可实现小于5%,最低可达到1%~2%,功率因数大于0.99;可以通过控制器实现闭环设计,输出稳压精度高,动态响应快,输出电压可调节,供电质量高
2023-04-03 14:37:48
用于AC/DC系统的功率因数校正PFC控制器IC
全球最知名的半导体厂商罗姆(ROHM)株式会社推出了两款用于AC/DC系统的功率因数校正(PFC)控制器IC——BD7690FJ和BD7691FJ,适用于所有需要提高功率因数的产品。这两款芯片采用
2019-04-28 09:55:07
采用FAN4810的500W功率因数校正电路
4采用FAN4810的500W有源功率因数校正电路的电路原理图①500W/PFC电路技术指标 输出功率:500W VMIN=80VAC(RMS) VMAX=264VAC(RMS) 工作效率
2010-12-29 15:28:06
L4981在门机电源功率因数校正中的应用
针对普通开关电源功率因数较低和谐波较大的缺陷,以M981功率因数校正芯片为核心,构建了双级式PFC电源的功率因数校正前级。在选取确定了主电路拓扑结构后,介绍了它的工作原
2008-12-19 01:50:4155
三相功率因数校正的设计考虑
除了一个单相单相功率因素校正(PFC)系统的要求,在三相电源系统上跟踪电压时对电流波形的需要也催生了另一组要求。三个相不仅都需要高功率因数(电流波形必须跟踪电压波
2009-04-27 11:37:5133
基于UC3854的三相单位功率因数校正电路研究
分析了UC3854 控制原理和三相三电平三开关功率因数校正电路特点,并结合UC3854 的原理设计出功率因数校正电路双闭环控制器,给出了仿真设计和结果。关键词:三相三开关三
2009-09-01 09:41:1498
单相有源功率因数校正技术的发展
本文对现有的功率因数校正技术进行了分析和总结。通过软开关技术以及新型高性能的电路拓扑设计,分析了提高AC-DC变换器的转换效率的技术。提出了无桥PFC电路是高性能功率因
2009-10-14 10:40:5441
新型软开关三相高功率因数整流器的研制
新型软开关三相高功率因数整流器的研制【摘 要】 提出了一种三相降压式电容输入多谐振功率因数校正(PFC)电路,并且分析了多谐振PFC的工作原理,采用单相时变简化分析模
2010-03-01 16:25:2334
单级PFC变换器的功率因数校正效果的研究
单级PFC变换器的功率因数校正效果的研究
为了使开关电源的输入电流谐波满足要求,必须加入功率因数校正(PFC)。目前应用得最广泛的是PFC级+DC/DC级的两级方案,它们
2010-04-12 18:04:2734
电荷泵式功率因数校正电子镇流器
电荷泵功率因数校正(CPPFC)电子镇流器由于其良好的功率因数校正性能越来越受到人们的关注。以几种带电荷泵功率因数校正器的电子镇流器为例子,介绍了电荷泵功率因数校正
2010-05-08 08:44:3954
中等容量三相功率因数校正技术的发展
摘要:功率因数仗正(PFC)技术是目前电力电子研究的热点之一。对于不同功率容量的装五,其采用的PFC技术都有各自的特点,文章介绍了当前中等容量(5 -10kVA)三相PFC技术发展的
2010-06-23 11:14:0215
先进的功率因数校正
议程AgendaR26; 引言Introductionh8707; 功率因数校正的基本解决方案Basic solutions for power factor correctionh8707; 要满足的新需求New needs to addressR26; 交错式的功率因数校正In
2010-07-30 10:18:3738
开关电源功率因数校正技术及功率级设计
摘要:本文较详细地分析了普通开关电源功率因数过低的原因及产生的危害,简要分析了各类功率因数校正电路的工作原理及主要优缺点,还介绍了功率因数校正主回路的设计方法。
2010-12-14 12:46:5446
反激式功率因数校正电路的电磁兼容设计
反激式功率因数校正电路的电磁兼容设计
通过反激式功率因数校正电路说明了单级功率因数校正电路中的电磁兼容问题,分析了单级功率因数校正电路中骚扰的产生机
2009-06-30 20:23:29934
一种新颖的功率因数校正芯片的研究
一种新颖的功率因数校正芯片的研究
摘要:介绍了一种新颖的功率因数校正(PFC)芯片。它的主要特点是提高了轻载时的功率因数和改善了电路的
2009-07-06 09:17:39871
带非正弦波电流的新颖数字式功率因数校正技术
带非正弦波电流的新颖数字式功率因数校正技术
摘要:数字式功率因数校正(PFC)技术利用标准的微控制器履行PFC控
2009-07-08 14:24:441051
单极隔离式功率因数校正(PFC)变换器
单极隔离式功率因数校正(PFC)变换器
1引言
现代开关电源的主要发展趋向之一是提高AC/DC变换器输入端功率因数,减少对电网的谐波污染。传统的AC/DC开关变换
2009-07-10 10:07:392759
功率因数校正用电感材料
功率因数校正用电感材料
Inductance Material for Use in PFC
摘 要 : 介 绍 用 于 无 源 和 有 源 功 率 因 数 校 正 中 电 感 材 料 的 特 性 和 选 择 。
2009-07-11 09:04:25887
改进的单级功率因数校正AC/DC变换器的拓扑综述
改进的单级功率因数校正AC/DC变换器的拓扑综述
摘要:单级功率因数校正(简称单级PFC)由于控制电路简单、成本低、功率密度高在中
2009-07-11 13:55:24640
一种新型单级功率因数校正(PFC)变换器
一种新型单级功率因数校正(PFC)变换器
摘要:提出了一种新型的功率因数校正单元(flyback+boost单元)。这种功率因数单
2009-07-14 17:49:32932
单级功率因数校正(PFC)研究的新进展
单级功率因数校正(PFC)研究的新进展
摘要:传统两级功率因数校正(PFC)电路复杂、器件多、功率密度低,效率不是很理
2009-07-14 17:52:481079
Buck型三相功率因数校正技术的发展
Buck型三相功率因数校正技术的发展
摘要:综述了Buck型三相PFC技术近年来的发展概况,特别是其中软开关技术的发展。分析
2009-07-14 17:53:531932
新颖的电流临界导通的功率因数校正芯片的研究
新颖的电流临界导通的功率因数校正芯片的研究
介绍了一种新颖的电流临界导通(DCMboundary)的功率因数校正(PFC)芯片。它的主要特点是提高了高电压输入时的功率
2009-10-29 17:46:18699
无源无损软开关功率因数校正电路的研制
无源无损软开关功率因数校正电路的研制
在开关电源中引入功率因数校正PFC(Power FactorCorrection)技术,一方面使电源输入电流与输入电压波形同相,即使功率因数趋于1
2009-11-05 10:17:251271
IR推出IR115x系列集成式功率因数校正(PFC)IC
国际整流器公司 (International Rectifier,简称IR) 推出 IR115x 系列集成式 ìPFC 功率因数校正 (PFC) IC,适用于多种 AC-DC 应用
2011-03-23 10:34:192112
基于Matlab的高功率因数校正技术的仿真
模拟控制器和数字控制器在单相Boost功率因数校正电路中都可以提高功率因数,消除高次谐波电流和降低总谐波畸变因数(THD),完全的实现了功率因数校正的目的,但是数字控制器在相比于模拟控制器
2011-06-03 11:21:384178
新型三相功率因数校正器的研究
以单相Cuk型变换器合成三相功率因数校正电路为研究对象,将三相交流电分成单相A-B、B-C、C-A进行功率因数校正,运用升压型平均电流控制的功率因数校正思想,解决了常规单相Cuk型有
2011-09-23 14:51:3651
无源功率因数校正电路的原理和应用
本文介绍SIEMENS公司提出的开关电源集成控制器TDA16846无源功率因数校正(PFC)电路原理及其在电视机开关电源中的应用。
2012-10-16 07:50:5488
对于PFC(功率因数校正)你了解多少
引言:PFC(Power Factor Correction)即功率因数校正,主要用来表示电子产品对电能的利用效率。功率因数越高,说明电能的利用效率越高。通过CCC认证的电脑电源,都必须增加PFC
2022-08-11 09:13:423777
将 BCM 功率因数校正 (PFC) 控制器用于 100W 照明系统的 LED 应用设计指南
将 BCM 功率因数校正 (PFC) 控制器用于 100W 照明系统的 LED 应用设计指南
2022-11-14 21:08:292
使用 BCM 功率因数校正 (PFC) 控制器用于 200W 照明系统的 LED 应用设计指南
使用 BCM 功率因数校正 (PFC) 控制器用于 200W 照明系统的 LED 应用设计指南
2022-11-15 19:57:590
美浦森推荐PFC 功率因数校正方案
PFC的英文全称为“PowerFactorCorrection”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。基本上
2022-04-29 16:40:55648
什么是功率因数 功率因数校正基础知识
简介 功率因数校正 (PFC) 是客户在选择电源时寻求的功能之一,因为它对设备的整体效率起着巨大的作用。本文档介绍了功率因数校正 (PFC)的基本事实和原理以及管理该功能的法规。它还讨论了常见的原因
2023-10-05 15:56:001056
干货 | 揭秘三相功率因数校正 (PFC) 拓扑结构(内附活动中奖名单)
点击蓝字 关注我们 三相功率因数校正 (PFC) 系统(或也称为有源整流或有源前端系统)正引起极大的关注,近年来需求急剧增加。推动这一趋势的主要因素有两个。本文为系列文章的第一部分,将主要介绍三相
2023-12-16 16:05:01300
评论
查看更多