电源中电磁元件的铁心结构 天水电气传动研究所徐泽玮(天水741018) 1引言 铁心是电源中电磁元件的重要部件,对它的性能起着重要的作用。设计电磁元件的铁心,包括以下几个主要内容: (1)根据电源的电路和工作频率,转换成铁心对软磁材料的要求,选取适用的软磁材料; (2)根据电源要求的性能指标,选取适用的铁心结构形式; (3)根据传送功率和输入阻抗(输入电感),计算和选取铁心尺寸; (4)根据电磁元件电磁场数学模型,进行铁心和线圈参数计算; (5)根据使用要求,换算铁心散热面积和工作温度。 如果工作频率在10Hz至20kHz的声频范围内,还要考虑周围环境对可闻噪声的要求。在强调环境保护的今天,可闻噪声污染,对人的身心都会造成相当的危害。因此,降低可闻噪声,使它限制在一定范围内,是相当重要的。如果达不到指标,在设计铁心结构时要采取降低噪声的措施。 对有铁心的电源变压器,第(1)、第(2)项是决定性的,文献1中已作介绍,不再赘述。关于第(3)项,比较通用的是从下面三个公式来设计和选取铁心尺寸。 ACAO=P2(1+η)/KUJfΔBm(1) ACLC=P2(1+η)/KUμOμfΔBm(2) L1=μOμACN12/lC(3) 式中:AC是铁心实际截面积(包括铁心占空系数KC); AO是铁心窗口实际面积(包括窗口占空系数KO),ACAO是铁心的特征参数; P2是电源变压器的输出功率; η是电源变压器的效率,P2(1+η)相当于电源变压器的视在功率; KU是波形系数,对矩形波为2,对正弦波为2?22; J是电流密度; f是工作频率; ΔBm是工作磁通密度变化范围,对磁通密度双向变化的电源变压器为2Bm,对磁通密度单向变化的电源变压器为Bm-Br; lC是铁心的平均磁路长度,ACLC是铁心的有效体积; L1是输入电感; μO是真空磁导率; μ是铁心在工作频率下的有效磁导率; N1是输入(初级)线圈匝数。 关于第(4)项,在超过一定工作频率的高频条件下,电源变压器的设计应当考虑电磁场的一维、二维或三维数学模型,否则会造成相当大的误差。原电子工业部的指导性技术文件SJ/Z2921?88《开关电源变压器设计方法》已不再适用。应当根据现在已经比较普及的计算机辅助设计,制定新的指导性技术文件。 关于第(5)项,一般不怎么受设计者重视,而是根据试制样品温升试验的结果再作修改。但是对功率较大(例如100W以上),工作频率较高(例如100kHz以上),还是先进行铁心工作温度核算,以便在设计中采取措施,防止铁心温升超过规定值。 以上简单地介绍电源变压器铁心的设计程序,不但是为了强调软磁材料和铁心结构对电源变压器的重要性,同时也是为了澄清现在设计中流行的一些方向误导的作法,供同行们参考。由于收集资料还不完备,这里只介绍高度为厘米级以上的立体式铁心结构,包括复合铁心结构和多功能(磁集成)铁心结构。至于高度为1mm~10mm级的平面式铁心结构和高度为1mm级以下的薄膜式铁心结构,以后再作介绍。
图1硅钢铁心的片形 (a)I形(b)CI形(c)EI形(d)EE形
图2硅钢叠片式铁心结构截面 (a)方形(b)三阶梯形(c)多阶梯形 2硅钢铁心 50Hz~60Hz工频电磁元件和400Hz~1000Hz中频电磁元件,多数选用硅钢铁心。硅钢铁心结构分为叠片式铁心和卷绕式铁心两种。 叠片式铁心是把硅钢带材通过剪切或冲压成铁心片,然后叠装成一定结构形式的铁心。从铁心片形状发展来看(图1),最早是单I形,后来是CI形、EI形和EE形,其目的是便于叠装,减少工时。如果材料是取向硅钢带,要注意使磁路中磁力线方向与硅钢取向一致,不要与硅钢取向垂直,否则会增加铁心激磁能量和铁心损耗。为了解决转角处磁力线方向不与硅钢取向垂直,后来又发展成45°斜切角形片形。从叠装成的铁心截面发展来看(图2),最早是方形,后来发展成三阶梯形、多阶梯形,使铁心截面逐步趋向圆形。这一方面是为了减少线圈平均匝长,降低阻抗和铜损;另一方面也是为了便于线圈绕制。从叠装成的铁心柱数发展来看(图3),最早是用于单相变压器和电抗器的两柱式,后来发展成用于三相变压器的三柱式,用于带平衡电抗器的整流变压器的五柱式。 卷绕式铁心是把硅钢带材剪切成需要的宽度后,卷绕成一定结构形式的铁心。从卷绕成的铁心形状发展来看(图4),最早为环形,后来为了便于绝缘结构设计和线圈绕制,发展成方框形。方框形包括:用于单相电源变压器的单框式和双框式,用于三相电源变压器的三框式和四框式。三框式又分为两种:一种是合成的,由两个小框外套一个大框组成;一种是独立的,由互相成120°角布置的三个方框组成。为了使铁心截面逐渐趋向圆形,和叠片式铁心一样,卷绕式铁心截面也从矩形,经过三阶梯形、多阶梯形,发展成铁心截面基本上是圆形的R形铁心。截面是R形的卷绕式环形铁心,称为O形铁心。既可充分利用铁心材料,又可以减少线圈平均匝长,是比较理想的卷绕式铁心结构。
图3硅钢叠片式铁心结构柱数 (a)两柱式(b)三柱式(c)五柱式
图4硅钢卷绕式铁心结构形状 (a)环形(b)单框形(c)双框形(d)合成三框形(e)120°布置三框形
图5硅钢CD形和XD形铁心结构 (a)CD形(b)XD形
卷绕式铁心和叠片式铁心比较,卷绕式铁心可以使磁路中的磁力线完全与硅钢取向一致,而且不存在气隙,因此激磁能量和铁心损耗将减小10%~25%,噪声也低一些。其铁心加工工艺比较简单,便于用机械加工代替手工叠装。但是线圈绕制比叠片式铁心难度大,必须用专门的绕线设备,如果线圈损伤则整体报废,不能返修。为了补偿这些缺点,把卷绕式铁心切开成两半,变成CD形和XD形铁心(图5)。这种结构虽然有两个或三个气隙,但仍然保持卷绕式铁心的优点,激磁能量和铁心损耗增加不多,噪声也增加不大。铁心加工除增加铁心切割加工和气隙磨光工序而外,加工工艺也不复杂,仍能采用机械加工。同时又象叠片式铁心那样线圈绕制比较容易。线圈损伤也便于拆卸更换。还有,CD形和XD形铁心对于必须有气隙的电抗器来说,更是一种比较理想的铁心结构。
图6铁基非晶合金单I形叠片式铁心结构
图7铁基非晶合金搭接式铁心结构
3非晶和微晶合金铁心 铁基非晶合金可以用在50Hz~60Hz工频和400Hz~20kHz中频电源中作为电磁元件的铁心材料。20世纪80年代末,日本大阪变压器厂的研究结论认为:铁基非晶合金铁心在150Hz以上的综合性能,比硅钢铁心好。经过十多年的研究,铁基非晶合金铁心正在向50Hz~60Hz工频领域扩展,和硅钢铁心进行竞争。 铁基非晶合金铁心结构也分为叠片式和卷绕式两种。叠片式铁心是比较早期的结构,是把铁基非晶合金带材剪切成一定的铁心片后,再叠装成一定结构形状的铁心。铁基非晶合金带材厚度一般为20μm~40μm,叠装起来既费时又不容易叠好。为了缩短工时和增加铁心强度,把几片和十几片薄铁心片粘接在一起,成为0.1mm~0.25mm厚的铁心片,但是损耗也有所增加。铁基非晶合金磁性不存在取向问题,但是剪切加工困难,一般铁心片形状都为单I形(图6),叠装后的铁心截面都为矩形。铁心柱数也分为单相电磁元件用的两柱式和三相电磁元件用的三柱式两种。由于需要大量的工时,叠装式铁基非晶合金铁心结构现在已很少使用。但是在150μm铁基非晶合金带材工艺成熟之后,仍然有可能采用叠装式铁心结构。 卷绕式铁心是把铁基非晶带材剪切或喷制成一定宽度后,再卷绕成一定结构形式的铁心。最早是环形,后来为了绕线方便,发展成方框形,包括单框形、双框形、三框形和四框形。再后来为了简化绕线和装卸工艺,便于更换线圈,发展成CD形和XD形。和硅钢卷绕式铁心结构不同,铁基非晶合金铁心在20世纪90年代初,出现一种新型的搭接式方框形铁心结构(图7)。在铁心的接缝部分,铁心带互相搭接在一起,而且接缝部分不在一条直线上,因此气隙比CD形铁心小。激磁能量和铁心损耗与卷绕式方框形铁心基本相同。但是它可以逐层打开,在装入线圈后,再逐层合上。线圈绕制、装卸和更换都比较容易。现在普遍认为,这种搭接式方框形铁心结构是综合了卷绕式方框形和CD形铁心结构优点的、比较好的铁心结构。不但可以用于低频,而且可以用于中高频电磁元件。在配电变压器中已经大量使用,既缩短了铁心加工和装配工时,又可以发挥非晶合金材料的优良性能。 钴基非晶合金和铁基微晶合金用于20kHz~500kHz中高频电源中的电磁元件,主要是卷绕式环形铁心结构,个别的采用CD形铁心结构。CD形铁心结构主要用于20kHz~50kHz的电磁元件,在超过100kHz时,由于线圈匝数少,主要用环形铁心结构。在大容量的电源中,20kHz~50kHz的电磁元件将来有可能采用搭接式铁心结构。 4高导磁合金(坡莫合金)铁心 为了充分发挥高导磁合金的高导磁特性,一般都采用卷绕式环形铁心结构。由于高导磁合金对应力敏感,在热处理后,要把环形铁心装在保护盒内,而且在绕线和绝缘处理工艺过程中,一定要轻拿轻放,避免冲击和应力对高导磁合金性能的影响。以前,在1kHz以下,也有个别情况采用叠片式铁心结构,铁心冲片为EE形或者EI形。现在比较少见了。坡莫合金由于环境适应性强,又扩展了使用频率范围,现在在电源中的用量有所增加。但是铁心结构仍然是卷绕式环形铁心结构。 5软磁铁氧体铁心
图8软磁铁氧体铁心结构 (a)EI形(b)EE形(c)EER形(d)EP形(e)UF形(f)UYF形(g)RM形 (h)PM形(i)PQ形(j)Q形(罐形)(k)T形(环形)(l)LP形 软磁铁氧体的铁心结构比较多,这是由于采用热压工艺,比较容易加工成各种形状。有EI、EE、EER、EP、UF、UYF、RM、PM、PQ、Q(罐形)、T(环形)和LP形等等(图8)。EI形以尺寸A(E形铁心宽度)为标志,EE形以尺寸A(E形铁心宽度)和2×B(E形铁心长度)为标志,已形成EI10~50,EE8.3/8.0~110/80系列,品种多,制造工艺简单成熟,散热好,便于引出接线,成本较低。缺点是铁心中间柱截面为方形,给线圈绕制带来麻烦。同时,无屏蔽,容易产生杂散磁场干扰。EER形也是以尺寸A(E形铁心宽度)和2×B(E形铁心长度)为标志,已形成EER25/33~54/50系列,铁心中间柱截面为圆形,绕线比较方便,同时绕线长度比方形截面缩短11%,从而降低铜损。但是仍无屏蔽。EP形铁心以铁心高度尺寸E为标志,已形成7至30系列,中间铁心柱为圆形,而且一边有屏蔽,另一边有缺口,便于引出接线。UF形铁心以U形铁心宽度A为标志,形成9.8~25系列,可以两个柱绕线,散热好,引出接线也方便,但是铁心截面为矩形,也无屏蔽。UYF形铁心以U形铁心厚度C(有时包括U形铁心高度2×B)为标志,已形成10~18系列,有的两个铁心柱面为圆形,有的一个铁心柱面为圆形(单边绕线),一个铁心柱截面为方形。RM形铁心以中间铁心柱的直径C为标志,已形成4~14系列,有中心孔和无中心孔(用G作标志)两种,中间铁心柱为圆形,两侧有屏蔽,有两边缺口,便于引出接线。PM形铁心以最大外径A为标志,已形成PM50~114系列,其两侧屏蔽比RM形铁心更宽,效果更好。Q形(罐形)铁心以最大外径A和高度C为标志,已形成Q7/4~Q40/29系列,屏蔽效果最好,单位空间电感值高,但缺口小,引出接线不便,有中心孔,以便安装。PQ形铁心以最大外径A和高度F为标志,已形成PQ20/16~50/50系列,比Q形铁心开的缺口大,引出接线方便,而且背面散热面积大,是高频电源变压器用的铁心结构中,综合性能最佳的一种。LP形铁心以铁心高度2D和一边较小的缺口长度E为标志,已形成LP23/8~LP32/13系列,也适用于高频电源变压器。T形(环形)铁心以外径×内径×高尺寸为标志,已形成6×3×2~124×62×40系列,截面为矩形,磁路无空气隙,电感值大,漏磁小。如果把截面改成圆形,变成类似硅钢O形铁心那样的结构,其绕线工艺和性能都有所改善。 6复合铁心和磁粉芯 复合铁心是指采用两种以上软磁材料组成的铁心结构。如果为了使铁心性能一致性好,而把一个铁心分成两个(或三个)铁心,进行性能搭配,这不能算成是复合铁心结构,因为它们使用的是同一种软磁材料,而不是两种以上软磁材料。复合铁心结构的典型例子是脉冲变压器用铁心,为了保证上升时间短和顶降小,使用坡莫合金和软磁铁氧体两种软磁材料组成的铁心,有环形的,也有叠片式的。 但是最常用的复合铁心结构是磁粉芯,它是用软磁材料和非磁性材料复合而成。虽然磁粉芯不用于电源变压器,而用于电感器,但是为了使铁心结构介绍比较全面一些,在本文中也把它介绍给读者。 磁粉芯是由金属软磁材料粉末与绝缘材料混合以后压制而成的,一般都是环形铁心。为了表明软磁材料的种类和性能,还涂有颜色(红、黄、绿、蓝)作为标记。由于金属软磁材料粉末被软磁材料所包围,形成分散气隙,从而大大降低高频涡流损耗,并具有抗饱和性能。 国家标准GBn251?85《镍铁磁粉芯》只针对高导磁铁镍合金材料制成的磁粉芯,现在已发展了铁磁粉芯、铁硅铝磁粉芯、非晶和微晶磁粉芯,故国标需要加以扩展和修订。 对磁粉芯提出的指标有饱和磁通密度Bs、有效磁导率μe、有效品质因数Qe、有效磁导率温度系αμe及居里点、比重等。主要的磁粉芯的性能参数如表1所示。铁镍钼磁粉芯国家标准型号为FN81,上海钢铁研究所型号为SN,美国阿诺德公司型号为MPP,磁导率高,工作环境适应范围广,损耗低,但价格贵。铁镍高磁通磁粉芯国家标准型号为FN50,美国阿诺德公司型号为HF,饱和磁通密度高,磁导率中等,损耗也较低,价格较便宜,国内外最近比较重视研究和使用。铁硅铝磁粉芯上海钢铁研究所型号为SA,美国阿诺德公司型号为MS,是一种价格较低,综合性能指标较好的磁粉芯。铁磁粉芯上海钢铁研究所型号SF,国外一般型号为IP,磁导率和饱和磁通密度高,但在高频下损耗大,只适用于低频和20kHz以下的中频使用。由于价格便宜,可以把它加工成大型磁粉芯,代替硅钢,作为大容量直流电源的滤波电抗器。 除了表1所列性能而外,一般还给出有效磁导率μe与频率f的关系曲线。与软磁铁氧体类似,在超过一定极限工作频率以后,有效磁导率会迅速下降。同时,还给出在有效磁导率μe下降50%的外加磁场强度,也就是恒磁范围。表2是铁镍钼磁粉芯和高磁通铁镍磁粉芯的恒磁范围。还有,对用于输出滤波器的磁粉芯,必须给出交直流同时磁化曲线,表示在大的直流磁化条件下,磁粉芯有效磁导率的变化情况。 表1磁粉芯的主要性能
图9平面布置的多功能铁心结构 (a)一个变压器和一个电抗器(b)一个变压器和两个电抗器
图10两种软磁材料组成的多功能铁心结构 (a)柜形铁心(b)桥式铁心 表2铁镍钼磁粉芯和高磁通铁镍磁粉芯恒磁范围
7多功能铁心(集成磁芯) 多功能铁心结构是指一种铁心同时起变压器和电抗器,变压器和磁性开关等多种功能。库克教授在提出库克电路的同时,把这种多功能铁心结构称为“集成磁芯”,意思是指它象半导体集成电路一样,把几种功能集成在一起。这个词语“集成磁芯”,到现在一直有人在使用。但是,现在出现了利用与半导体集成电路工艺相类似的技术,制造薄膜式铁心及其应用的电磁元件,有的人称为“微磁性器件”,有的人称为“集成磁性器件”。因此,我认为再使用集成磁芯就容易使人混淆,把两种完全不同的铁心结构认为是同一样的东西,所以把原来的集成磁芯改称为“多功能铁心”。 其实,最早的多功能铁心出现在铁磁谐振稳压器中,包括一个变压器和一个由磁分路组成的电抗器。恒压变压器是由铁磁谐振稳压器发展而来的,铁心也属于多功能铁心结构。 常见的多功能铁心结构主要是平面布置的形式(图9)。图9(a)是一个变压器和一个电抗器的铁心结构。图9(b)是一个变压器和两个电抗器的铁心结构。图10巧妙地采用两种软磁材料组成多功能铁心结构。图10(a)外框铁心采用高导磁合金材料,形成变压器,中间采用低导磁材料形成电抗器。除了这种框形加中间柱结构而外,还有图10(b)的桥式多功能铁心结构,四个桥臂用高导磁材料,桥对角线用低导磁材料或者开一个气隙。 从20世纪80年代末开始,对由垂直形铁心构成的立体布置的多功能铁心结构进行研究的人员越来越多。最早是有人把C形铁心的一半转90°而形成的,发现在没转90°的C形铁心上的绕组之间仍存在变压器功能,转90°的C形铁心上绕上一个绕组,可以通过电流激磁后,改变没转90°的C形铁心上绕组的电感〔见图11(a)〕。后来把铁心去掉一些变成图11(b),仍然具有这样的功能。图11(c)是把两个变压器和两个可控电感组合在一起的多功能铁心结构。
图11垂直形铁心组成的多功能铁心结构 (a)一个C形铁心转90°可控电感(b)(a)的演变,可控电感 (c)二个变压器与二个可控电感的组合 利用这种垂直形多功能铁心结构已经研制开发出交流稳压电源、逆变电源、电压谐振式和电流谐振式开关电源,具有可靠性高(主要是铜铁材料)、可自动无级调节、消除谐波好、效率高等优点,是值得继续开发的一种特殊的铁心结构。 8结语 (1)各种软磁材料由于使用领域不同,可以组成不同的铁心结构。在选取铁心结构时首先要注意能充分发挥软磁材料的优点,其次要注意工艺加工的复杂程度和材料的利用率,也就是成本。根据市场和用户的要求综合考虑,不能只注意性能一面而忽略成本和价格的另一面。 (2)任何铁心结构都各有其优缺点,不能因为偏爱等主观因素而抬高一种否定其它;也不能随大流,由于大多数人反对,而对一种铁心结构采取绝对否定的态度。例如:有的人过分欣赏R形卷绕式铁心结构,不愿注意到这种铁心结构本身存在的一些问题。又例如:大多数人认为120°布置三框式铁心结构不可能用在电源变压器中去,但是已有人把它用于追求体积小的电源变压器中,取得了良好效果。 (3)现在的铁心结构在低频和中频电源变压器中发展比较成熟。在高频电源变压器中还有许多工作要做,那已经不属于立体式铁心结构范围,而属于平面式铁心结构和薄膜式铁心结构范围。这两种结构正成为高频电源变压器的研究热点。据报道,高频开关电源的高度,采用平面式铁心结构的变压器在1995年还大于5mm,到1998年,采用低高度平面式铁心结构的变压器,高频开关电源的高度已在5mm~3mm之间。预测到2002年,采用薄膜式铁心结构的变压器和集成工艺技术,把磁性元件、半导体器件和电容器集成在一个单片上,组成新型的单片式高频开关电源,高度可低于3mm,甚至达到1mm。短短十年期间,就从立体式铁心结构跨越平面式铁心结构,发展到薄膜式铁心结构,发展之迅速使人惊叹不已! (4)在利用多功能铁心结构,开发性能独特的直流和交流电源方面,日本索尼公司的一些人员不随大流,坚持研究垂直型多功能铁心结构,而取得了有自己知识产权的成果。这种创新精神和坚韧不拔的努力,给我们一个很好的启示。希望我国的电源技术工作者能够开发出有自己特色的产品,在电源技术新领域中占有一席之地。 |
电源中电磁元件的铁心结构
- 电磁(50911)
- 元件(36117)
相关推荐
电磁继电器的结构和工作原理
电磁继电器的结构和工作原理
电磁继电器是继电器中应用最早、最广泛的一种继电器。电磁继电器一般由铁心、电磁线圈、衔铁、复位弹簧、触点、支座及引脚等组成,如
2009-08-22 15:11:4210666
电源设计指南——变压器的要求和技术参数解析
电源中一般都含有软磁铁心组成的电磁器件。按照比较广义的说法,在电子设备和电子电路中的电磁器件,都叫做电子变压器。电源中变压器或电磁器件,绝大多数属于电子变压器。##下面分析变压器主要技术参数与铁心材料和导电材料之间的关系。
2014-09-05 14:36:202729
电源中变压器有什么要求?
电源中一般都含有软磁铁心组成的电磁器件。按照比较广义的说法,在电子设备和电子电路中的电磁器件,都叫做电子变压器。电源中变压器或电磁器件,绝大多数属于电子变压器。但是,有的电源中,变压器还具有耐高压的绝缘要求。
2020-04-02 09:00:09
电源的电工有福了:开关电源的电磁兼容性设计
能量,这些电磁能量会影响其他设备或系统的正常工作,这就是电磁骚扰。电磁骚扰有可能使开关电源的工作性能下降,甚至使开关电源的使用寿命缩短,或根本无法正常工作。可见,电磁兼容性设计在开关电源中是非常重要的和不可
2012-11-05 13:27:33
电磁兼容设计基本要点
调试时间,使产品满足电磁兼容标准的要求,使产品不会对系统中的其它设备产生电磁干扰。2. 对产品做电磁兼容设计可以从哪几个方面进行?答:电路设计(包括器件选择)、软件设计、线路板设计、屏蔽结构、信号线/电源线滤波、电路的接地方式设计。
2019-07-25 07:56:44
电磁场涡流计算分析
实验室有一套自己的电磁探测系统,用于探测未爆弹。系统采用的是发射接收线圈同心结构,我想要研究当金属位于线圈下方不同深度时,能不能计算接收线圈的接收信号的规律?自己的思考:这个问题分为三大步,一、计算
2020-01-07 14:45:29
电磁干扰和电磁兼容在开关电源中的注意事项
电磁干扰和电磁兼容在开关电源中的注意事项我们知道,在开关电源里面,开关电源变压器是最大的磁感应器件。反激式开关电源变压器,就是通过把流过变压器初级线圈的电流转换成磁能,并把磁能存储在变压器铁心之中
2009-05-22 08:18:02
电磁感应产生传导干扰的原理
关断的时候,流过变压器初级线圈的电流为0 的时候,开关电源变压器才把存储在变压器铁心之中磁能转换成电能,通过变压器次级线圈输出。开关电源变压器在电磁转换过程中,工作效率不可能100%,因此,也会有一部分
2009-05-05 08:41:13
电磁时间继电器的调试有什么方法?
电磁时间继电器分别有凸出式固定结构,凸出式插拔结构,嵌入式插拔结构三种壳体;它作为辅助元件用于各种保护及自动装置线路中,使被控元件达到所需要的延时,在保护装置中用以实现主保护与后备保护的选择性配合。
2019-11-05 09:10:17
电磁铁的基本概念是什么
内部带有铁心的、利用通有电流的线圈使其像磁铁一样具有磁性的装置叫做电磁铁,通常制成条形或蹄形。铁心要用容易磁化,又容易消失磁性的软铁或硅钢来制做。这样的电磁铁在通电时有磁性,断电后就随之消失
2021-05-12 06:15:58
PCB中电磁兼容性设计
美观,布局均匀,忽视了线路布局对电磁兼容性的影响,使大量的信号辐射到空间形成相互干扰。一个拙劣的PCB布线能导致更多的电磁兼容问题,而不是消除这些问题。 电子设备中数字电路、模拟电路以及电源电路的元件
2016-09-06 21:32:21
PCB中的电磁兼容设计
PCB中的电磁兼容设计传输线效应PCB 板上的走线可等效为下图所示的串联和并联的电容、电阻和电感结构。串联电阻的典型值0.25-0.55 ohms/foot,因为绝缘层的缘故,并联电阻阻值通常很高
2009-06-18 07:50:26
PCB元件布局原则及小技巧
上,尽量减少和缩短各元器件之间的引线和连接以方便布线并减少电磁干扰。在PCB中,特殊的元件比如电源器 件、可调器件、发热及热敏感器件、高频部分的关键元件、核心芯片、易受干扰的元件、体积或重量大的器件
2018-09-19 16:19:09
PCB设计中抑制电磁干扰的几个准则及窍门
靠近整流二极管放置。 3)电源与地的布线原则 PCB的电源与地的布线是否合理是整个电路板减小电磁干扰的关键所在。电源线和地线的设计是PCB中不可忽视的问题,往往也是难度最大的一项设计,设计时应遵循
2018-09-21 11:51:38
[转帖]技术交流 电源中变压器的要求和技术参数----好东东哦
电源中变压器的要求和技术参数
1 前言
电源中一般都含有软磁铁心组成的电磁器件。按照比较广义的说法,在电子设备和电子电路中的电磁器件,都叫做电子变压器。电源中变压器或电磁器件,绝大多数属于电子
2018-07-13 09:24:10
【EMC家园】解决高频开关电源的电磁兼容问题!
通过空间传播,频率在30~1000MHz。1高频开关电源的电路结构高频开关电源的主拓扑电路原理,如图1所示。2高频开关电源电磁骚扰源的分析在图1a电路中的整流器、功率管Q1,在图1b电路中的功率管Q2
2016-04-21 16:28:30
【Protel设计】印刷线路元件布局结构设计讨论
(电气性能、整机结构安装及面板布局等要求),采取相应的结构设计方案,并对几种可行设计方案进行比较和反复修改。印刷板电源、地总线的布线结构选择----系统结构:模拟电路和数字电路在元件布局图的设计和布线
2016-10-09 19:43:10
【案例分享】高频开关电源的电磁兼容解决方案
随着高频开关电源技术的不断完善和日趋成熟,其在铁路信号供电系统中的应用也在迅速增加。与此同时,高频开关电源自身存在的电磁骚扰(EMI)问题如果处理不好,不仅容易对电网造成污染,直接影响其他用电设备
2019-08-13 04:30:00
【转】电源的电磁干扰技术设计要点
滤波电路简单,成本低廉,工作性能可靠,是抑制电磁干扰的有效方式。无源滤波器由电感、电容、电阻元件组成,其直接作用是解决传导发射。开关电源中应用的无源滤波器的原理结构图如图1所示。电源的电磁干扰技术设计
2018-05-22 22:02:23
二十种开关电源拓扑结构(建议收藏)
什么是拓扑呢?所谓电路拓扑就是功率器件和电磁元件在电路中的连接方式,而磁性元件设计,闭环补偿电路设计及其他所有电路元件设计都取决于拓扑。最基本的拓扑是Buck(降压式)、Boost(升压式
2021-07-13 17:24:23
印刷线路元件布局及结构设计
的结构设计方案,并对几种可行设计方案进行比较和反复修改。印刷板电源、地总线的布线结构选择—-系统结构:模拟电路和数字电路在元件布局图的设计和布线方法上有许多相同和不同之处。模拟电路中,由于放大器的存在
2014-12-15 11:25:08
变压器结构设计手册
变压器结构设计手册内容有:计算程序,进品硅钢板的牌号及其特性,导线尺寸截面积,铁心各级尺寸表,三相单框铁心,夹件,木垫块,铁心及夹件用零件,铁心,铁心装置零件表,铁轭冲槽,铁心用单件,夹件绝缘等内容.变压器结构设计手册
2008-12-13 01:33:09
变压器铁心制造工艺
铁心制造的基本知识;第二章?铁心片的制造;第三章?铁心卷制成形处理;第四章?铁心的结构;第五章?铁心的选片和叠装;第六章?国内外铁心制造“四新”成果简介。附录中列出了国内外硅钢片和非晶合金材料的常用
2008-12-13 01:31:45
多层布线的发展及在电源电路电磁兼容设计中的应用
电源电路中电磁干扰的产生 2.1.1 元件选择不合理 在电源电路中,高频开关器件、高频变压器、电感等的使用,为辐射型电磁干扰的产生带来了可能。 2.1.2 元器件布局不合理 元器件布局的合理性
2009-10-10 09:15:44
如何将恒温烙铁中的铁心变压器供电改成开关电源供电
耦合器U10替换原U1,图2中功率场效应管Q1替换图1的TR1。R20、R21是增加的元件。因烙铁芯的电源由原来的交流改成了直流。原有的可控硅就不能用了.现用场效应管来代替它。当光耦合器U10导通时,即
2021-05-12 06:10:38
如何通过元件布局把控来控制EMI?
在设计好电路结构和器件位置后,PCB的EMI把控对于整体设计就变得异常重要。如何对开关电源当中的PCB电磁干扰进行避免就成了一个开发者们非常关心的话题。在本文中,小编将为大家介绍如何通过元件布局的把控来对EMI进行控制。
2019-09-11 11:52:24
开关电源中电磁干扰的产生及其抑制
。如果处理不当,开关电源本身就会变成一个干扰源。电磁干扰对开关电源的效率和安全性及使用的影响日益成为人们关注的热点。本文分析了开关电源中电磁干扰产生的原因和传播路径,并提出了抑制干扰的有效措施。传奇商务
2009-08-17 09:11:30
开关电源中的磁性元件
开关电源中的磁性元件第一章 磁的基本概念………………………………………………………………………11.1 磁的基本现象 …………………………………………………………………………………11.2 电流
2008-07-08 17:47:27
开关电源电磁干扰因素
系列标准和我国现行的GT3/T13926系列EMC标准等。随着国际电磁兼容法规的日益严格,产品的电磁兼容性能越来越受到重视。开关电源作为一种电源设备,其应用越来越广泛。随着电力电子器件的不断更新
2019-05-30 06:29:01
开关电源的电磁兼容性设计
“磁绝缘”材料,电磁屏蔽是利用“磁短路”的原理,来切断电磁干扰在设备内部与外界空气中的传播路径。在进行开关电源的箱体结构设计时,要充分考虑对电磁干扰的屏蔽效能,对于屏蔽材料的选择原则是,当干扰电磁
2017-03-14 17:27:28
异步电机的分类及其总体结构介绍
;11-转轴;12-轴承外盖 图5 主要部件拆分图 异步电机各部分结构 定子部分 定子是用来产生旋转磁场的。三相电动机的定子一般由外壳、定子铁心、定子绕组等部分组成。 外壳 三相电动机外壳包括
2023-03-01 11:53:25
异步(鼠笼)电动机的结构工作原理浅析
动势及感生电流;感生电流进而受到电磁力的作用,转子才能旋转。交流电机的基本结构基本结构异步电机主要结构部件异步电机的主要结构部件 三相异步电动机(1)定子定子铁芯 由机座、定子铁心和定子绕组三个部分
2016-01-11 11:55:17
感应系电能表的结构
1、感应系电能表的结构感应系电能表的结构图感应系电能表的结构如图所其主要组成部分有:(1)驱动元件用来产生转动力矩,由电压元件和电流元件两部分组成。电压元件是指在E字形铁心上绕有匝数多且导线截面较小
2018-01-29 10:46:44
抑制同步开关噪声的新型电磁带隙结构BS EBG
摘要:本文针对抑制印刷电路板中电源平面与接地平面之间的同步开关噪声问题,提出了一种新型的二维电磁带隙结构(BS EBG)。其有效阻带为220 MHz~20 GHz,覆盖近20 GHz 的带宽
2018-09-28 16:18:59
环形变压器的结构、性能
小,电磁辐射弱,抵抗外部磁干扰能力强,无需加屏蔽层,安装在各种复杂结构的电子设备上,不会产生任何电磁干扰。由于铁心没有气隙,磁导率高,没有物理结构的震动噪音。即使在大电流,高负载运行环境中,人的听觉
2011-07-09 16:07:59
电力电子技术中磁性元件的设计
针对从事电力电子技术和电源技术工程师对磁性元件设计难的问题,分析了磁性器件在电路中的作用和铁心工作的3种状态,提出设计和选择磁性材料、铁心形状和铁心截面积的依据,设计和选择绕组线圈匝数和绕组线径的依据,以便从事这方面的设计人员更方便更有效地进行设计。
2011-03-11 16:34:33
电子镇流器中电磁干扰的来源及其影响
中,功率开关管的高频开关信号通过反馈元件加到输入端,经过电源进线送入电网中,形成传导干扰。 电子镇流器工作时,形成的磁场、电场通过输入、输出导线及负载或某些元器件以电磁波的形式向外辐射,与周边电子
2011-11-21 17:16:17
电机组成结构
一般采用硅钢片叠压而成,漆包线绕在转子铁心的两槽之间(三槽即有三个绕组),其各接头分别焊在换向器的金属片上。电刷是连接电源与转子绕组的导电部件,具备导电与耐磨两种性能。永磁电机的电刷使用单性金属片或金属
2019-07-03 04:20:19
直流伺服电机的结构与工作原理
而使转动惯量小,响应快速。转子在由软磁材料制成的内、外定子之间旋转,气隙较大。无刷直流伺服电机用电子换向装置代替了传统的电刷和换向器,使之工作更可靠。它的定子铁心结构与普通直流电机基本相同,其上嵌有
2018-09-13 10:02:46
空调器中所使用的电磁继电器有哪些
的液压电气转换元件,即当空调器装置中压缩机的排出压力超过调定值或吸入压力低于调定值时,压力继电器的电触点切断电源,使压缩机停止工作,起到保护和自动控制的作用。下图所示为压力继电器内部结构。 压力
2020-12-25 16:04:34
通过对元件摆放及布局抑制PCB电路板的电磁干扰
在开关电源PCB设计中,电磁干扰可谓是一个令工程师们头痛的问题!在设计好电路结构和器件位置后,PCB的EMI把控,对于整体设计非常重要。那么如何避免开关电源当中的PCB电磁干扰呢?今天小编将为大家介绍一下如何通过元件布局的把控来对EMI进行控制,想要了解的朋友们千万不要错过哦~
2020-10-30 08:13:57
采用电磁带隙和磁性材料的PCB电源结构
,适当的电磁带隙(EBG)结构可以有效地降低供电系的电磁干扰。本文通过运用基于快速算法和分解元法的计算机仿真,研究供电系EBG结构中采用磁性材料后的阻抗特性。研究表明,在供电系内侧增加磁性材料涂层,能在
2010-04-22 11:46:32
高频开关电源的电磁兼容(EMC)技术分析
随着高频开关电源技术的不断完善和日趋成熟,其在铁路信号供电系统中的应用也在迅速增加。与此同时,高频开关电源自身存在的电磁骚扰(EMI)问题如果处理不好,不仅容易对电网造成污染,直接影响其他用电设备
2021-08-04 07:00:00
高频开关电源设计中的电磁兼容问题探讨
)日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合EMC标准,已成为电子产品设计者越来越关注的问题。本文就高频开关电源设计中的电磁兼容性问题进行了探讨。
2019-07-25 08:24:05
磁路与铁心线圈电路
磁路与铁心线圈电路6.1 磁场的基本物理量6.2 磁性材料的磁性能6.3 磁路及其基本定律6.4 交流铁心线圈电路6.5 变压器6.6 电磁铁 本章要
2008-12-04 14:06:500
电力电子技术中磁性元件的设计
电力电子技术中磁性元件的设计::针对从事电力电子技术和电源技术工程师对磁性元件设计难的问题,分析了磁性器件在电路中的作用和铁心工作的3种状态,提出设计和选择磁性材
2009-10-31 14:26:47150
变压器铁心最佳截面计算
摘要:论述了利用动态规划法计算变压器铁心最佳截面的原理、方法和计算程序,并对Φ50~Φ400 变压器铁心叠积尺寸进行了优化设计。关键词:变压器;铁心;最佳截面;计算原理;优
2010-02-09 11:02:5795
铁氧体元件在电磁兼容设计中的应用
智能化仪表在变电站强电磁干扰环境中实现可靠地工作是一个急待解决的问题,利用铁氧体元件独特的电磁特性来改善系统的电磁兼容性能是在这个方面的一个非常有效的措施之一,讨
2010-07-29 16:25:2147
电源变压器设计与计算铁心面积公式
电源变压器设计与计算铁心面积公式:铁心面积=容量开平方;以100W为例;100开平方=10平方厘米.电子管输出变压器的铁心面积=容量开平方*2.以15W输出变压器为例:15
2008-10-23 14:39:496918
小型电源变压器的结构
小型电源变压器的结构
图6-4 是一些小型电源变压器的外形图。它主要由铁心、骨架、绕组、绝缘物及紧固件等组成。
1.铁心小型电源变压器铁心常见的有E型
2009-08-22 15:01:148711
C型铁心电源变压器
C型铁心电源变压器
C型铁心、变压器的结构如图6-6 所示。其铁心由两个C 型铁心组成,又称为CD 铁心,绕组分两组绕在铁心的两侧,然后用串并联的方式连接。
2009-08-22 15:01:393900
铂电阻元件的结构及外形
铂电阻元件的结构及外形
铂电阻元件的结构形式常见的有下列三种:
1.薄膜式薄膜式铂电阻元件是由铂箔自积淀于瓷基体表面而形成的,它的体积较小, O℃
2009-09-19 18:05:232783
磺酸锂湿敏元件的结构
磺酸锂湿敏元件的结构磺酸锂湿敏元件的结构如图所示。其制作过程如下:在绝缘基片上浸渍磺酸锂形成感湿基片,然后在感湿基片的两面制成叉指式碳电极
2009-11-30 09:42:42869
MIM单元结构
MIM单元结构
MIM是由金属、绝缘体、金属三层薄膜组成的夹心结构。用于液晶显示的MIM结构如图1所示,主要有两种: (1)图1(a)是比较
2010-01-09 15:43:471469
MIM元件结构及特点
MIM是由金属、绝缘体、金属三层薄膜组成的夹心结构。用于液晶显示的MIM结构,MIM元件的特点是其伏安特性的非线性变化。液晶显示正是利用了MIM的这个特点。
2011-11-28 10:15:4015729
图解电源内部结构及组成元件
图解电源内部结构及组成元件在这里,需要提醒大家注意的是,在很多图解文章中我们都能够看到一些图注,而我们实际应用中不能以偏概全,对应文章中的图片找一模一样的电子元件
2011-11-30 17:45:1539090
变压器结构名称及作用
变压器主要部件是铁心(器身)和绕组。铁心是变压器的磁路,绕组是变压器的电路。二者构成变压器的核心即电磁部分。除了电磁部分,还有油箱/冷却装置/绝缘套管/调压和保护装置等部件。
2017-11-06 11:25:3416199
改进永磁模块的饱和铁心型故障电流限制器物理结构
提出了一种带有改进永磁模块的饱和铁心型故障电流限制器物理结构,并且给出其等效电路模型。使用永磁模块从多个方向对故障电流限制器的铁心进行激磁,显著提高了铁心内部的磁通密度,降低了对直流励磁电流的需求
2017-12-14 15:24:460
一种饱和铁心桥式故障限流器
为解决系统短路电流过大、传统饱和铁心型故障限流器限流效果和经济性不理想等问题,提出一种饱和铁心桥式故障限流器( BSFCI)。相比传统饱和铁心型故障限流器,该限流器采用桥式结构,可有效减小限流
2018-01-29 11:23:340
直流电压源的铁磁元件铁心剩磁通测量方法
剩磁通可能给变压器带来较大的励磁涌流,影响测量互感器的测量精度。然而目前对于变压器的铁心剩磁通测量还没有规范的方法。为了便捷地测量铁心剩磁通,提出一种采用极性变化的直流电压源来测量铁磁元件铁心剩磁
2018-01-29 16:59:532
抗电源电磁干扰的EMI滤波器设计原理、结构及使用方法
随着现代科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行中产生的高密度、宽频谱的电磁信号充满整个空间,形成复杂的电磁环境。复杂的电磁环境要求电子设备及电源具有更高的电磁
2018-02-16 12:07:008415
低频电源测量铁磁元件铁心损耗的低频测量法
工频电源测量铁磁元件铁心损耗的低频测量法。该方法通过施加几个频率的低频电压,测量低频下的铁损耗PFe,得到不同频率的E/f(电动势/频率)PFe曲线,再通过样条插值法计算频率不同、E/f相等时的铁损耗,根据最小二乘原理计算折算
2018-02-07 13:59:421
电力变压器结构示意图
心式铁心的特点是铁轭靠着绕组的顶面和底面,但不包围绕组的侧面;壳式铁心的特点是铁轭不仅包围绕组的顶面和底面,而且还包围绕组的侧面。由于心式铁心结构比较简单,绕组的布置和绝缘也比较容易,因此我国电力
2018-02-07 14:48:3596483
铁磁元件励磁特性低频测量方法
针对现有低频测量铁磁元件励磁特性方法未考虑铁心损耗的问题,通过对低频实验下铁心损耗的原理分析,得出了励磁电源频率变化仅影响励磁电流中涡流等效电流大小的结论。由此提出了适用于铁磁元件励磁特性现场测试
2018-02-07 15:56:483
电磁继电器结构
电磁继电器的基本结构和工作原理与接触器相似,由铁心、衔铁、线圈、复位弹簧和触点等部分组成。由于电磁继电器用于辅助电路,其接通和分断的电流小,故不配灭弧装置。电磁继电器的电磁系统有直动式和拍合式两种类型。交流继电器的电磁机构有U形拍合式和E形直动式。直流继电器的电磁机构为U形拍合式,其结构如图:
2019-02-25 14:07:1826827
定子铁心的作用及对其有哪些要求?
定子铁心是电机磁路的重要组成部分,它和转子铁心、定子和转子之间的气隙一起组成电机的完整的磁路。在异步电机中,定子铁心中的磁通是交变的,因而产生铁心损耗。定子铁心是定子的重要部件,也是电机磁路的主要组成部分。它是由扇形片、通风槽片、定位筋、上下齿压板、拉紧螺栓及托板等零件组成。
2019-09-05 11:06:0017346
电磁接触器的结构_电磁接触器的分类
电磁接触器,magneticcontactor,接触器(Contactor)是指工业电中利用线圈流过电流产生磁场,使触头闭合,以达到控制负载的电器。接触器由电磁系统(衔铁、静铁心、电磁线圈)触头系统(常开触头和常闭触头)和灭弧装置组成。
2020-01-10 10:07:136986
三极管核心结构及功能资料下载
电子发烧友网为你提供三极管核心结构及功能资料下载的电子资料下载,更有其他相关的电路图、源代码、课件教程、中文资料、英文资料、参考设计、用户指南、解决方案等资料,希望可以帮助到广大的电子工程师们。
2021-04-02 08:45:472
电力变压器的基本结构
电力变压器是根据电磁感应原理制造出来的电气设备,因此,电力变压器至少应有能高效利用电磁感应的铁心和绕组。电力变压器的主要部分是铁心、绕组、绝缘、外壳和必要的组件等。由于容量、电压的不同,电力变压器的铁心、绕组、绝缘、外壳和必要的组件的结构形式可以是不一样的。
2023-04-24 15:52:131621
开关电源磁性元件设计 电磁噪声的处理
BOSHIDA电源模块 开关电源磁性元件设计 电磁噪声的处理 众所周知,开关电源在降低装置物理尺寸和内部功耗方面具有显著的优势。然而,其快速变化的电压和电流波形富含高频谐波,它们产生的电磁干扰EMI
2023-05-26 09:02:34249
EMI电磁屏蔽膜结构 emi电磁屏蔽膜原理
EMI(Electromagnetic Interference)电磁屏蔽膜是一种用于抑制电磁干扰的材料,其结构可以有不同的形式。以下是常见的EMI电磁屏蔽膜的结构
2023-07-19 15:17:052175
电磁继电器和固态继电器的区别
继电器两种。下面将从结构、原理、优缺点等方面详细介绍电磁继电器和固态继电器的区别。 一、结构上的区别 电磁继电器由电磁铁、弹簧、触点等组成。电磁铁是核心部件,当电流通过线圈时,形成强磁场使铁心吸引铁芯,使触头切
2023-09-26 16:38:211407
中国电机铁心市场规模及应用
铁心也就是磁心。铁心(磁心)在整个电机里面起到了举足轻重的作用,它用来增加电感线圈的磁通量,已实现电磁功率的最大转换。电机铁心通常是由一个定子和一个转子组合而成。
2023-11-17 11:13:59313
电源适配器是如何抑制电磁干扰的?
电源适配器是如何抑制电磁干扰的? 电源适配器是一种将电源的交流电转换为电子设备所需的直流电的装置。鉴于其工作原理和内部结构,电源适配器通常会产生一些电磁干扰。为了确保设备的正常运行并同时满足电磁
2023-11-23 14:38:46425
三位三通电磁阀基本结构及工作原理
三位三通电磁阀是一种常用的控制执行元件,广泛应用于各种自动化领域。它们通常用于控制液压、气动系统中的液体和气体的流动,并实现各种不同的控制功能。本文将详细介绍三位三通电磁阀的基本结构和工作原理
2024-01-24 11:00:50636
评论
查看更多