移相全桥ZVS变换器的原理与设计摘要:介绍移相全桥ZVS变换器的原理,并用UC3875控制器研制成功3kW移相全桥零电压高频通信开关电源。 关键词:移相全桥零电流开关零电压开关准谐振 The Principle and Design of Phase? shifted Full? bridge Zero? voltage Convertor Abstract: The paper introduces the principle of phase? shifted full? bridge zero? voltage? switching convertor.A 3kw full? bridge ZVS convertor was developed using UC3875 controller. Keywords: Phase? shifted full? bridge, ZCS, ZVS, Quasi? resonance 中图法分类号:TN86文献标识码:A文章编号:0219?2713(2000)11?572?03 1引言 传统的全桥PWM变换器适用于输出低电压(例如5V)、大功率(例如1kW)的情况,以及电源电压和负载电流变化大的场合。其特点是开关频率固定,便于控制。为了提高变换器的功率密度,减少单位输出功率的体积和重量,需要将开关频率提高到1MHz级水平。为避免开关过程中的损耗随频率增加而急剧上升,在移相控制技术的基础上,利用功率MOS管的输出电容和输出变压器的漏电感作为谐振元件,使全桥PWM变换器四个开关管依次在零电压下导通,实现恒频软开关,这种技术称为ZVS零电压准谐振技术。由于减少了开关过程损耗,可保证整个变换器总体效率达90%以上,我们以Unitrode公司UC3875为控制芯片研制了零电压准谐振高频开关电源样机。本文就研制过程,研制中出现的问题及其改进进行论述。 2准谐振开关电源的组成 ZVS准谐振高频开关电源是一个完整的闭环系统,它包括主电路、控制电路及CPU通讯和保护电路,如图1所示。 从图1可以看出准谐振开关电源的组成与传统PWM开关电源的结构极其相似,不同的是它在DC/DC变换电路中采用了软开关技术,即准谐振变换器(QRC)。它是在PWM型开关变换器基础上适当地加上谐振电感和谐振电容而形成的,由于运行中,工作在谐振状态的时间只占开关周期的一部分,其余时间都是运行在非谐振状态,所以称为“准谐振”变换器。准揩振变换器又分为两种,一种是零电流开关(ZCS),一种是零电压开关(ZVS),零电流开关准谐振变换器的特点是保证运行中的开关管在断开信号到来之前,管中电流下降到零。零电压开关准谐振的特点是保证运行中的开关管在开通信号到来之前,管子两端的电压已经下降到零。 3零电压准谐振变换器的工作原理 全桥零电压准谐振变换器的主电路如图2所示。Uin为PFC电路输出的直流电压(400V),S1~S4为功率开关管,其体二极管为D1~D4,图中未画出其体电容C1~C4,Lr为变压器T1初级串联谐振电感,(包括变压器的漏感),C为防止变压器因偏磁而饱和的隔直电容,T2为电流互感器,用于检测。当变换器过流时,保护电路切断驱动信号,保护功率器件。变压器次级电压经过D5、D6整流和输出LC滤波器给负载供电。图3给出了变压器初级电压UP、次级电压US和初级电流ip的波形图。ZVS变换器一周期内可分为六个运行模式,如表1所示。图3中设t 图13kW通信开关电源方框图 图2移相全桥ZVS变换器控制和输出电路原理图 图3全桥ZVS?PWM变换器的主要波形 图4移相PWM转换器控制和驱动原理图
4占空比分析 由波形图可见,由于变换器存在漏电感,使初级电流在t1~t3阶段,有一定斜率,因此次级电压占空比(t4-t3)/(t4-t0)小于初级电压占空比(t4-t1)/(t4-t0),造成占空比损失。开关频率越高,占空比损失越大。 5移相全桥两桥臂开关管实现ZVS的条件 由表1和图3可以看出,S3和S4实现ZVS分别早于S1、S2,故称S3、S4为右桥臂又称超前桥臂,S1、S2为左桥臂又称滞后臂。由表1可以看出S3、S4实现ZVS分别在(t0~t1)和(t4~t5),S2、S1实现ZVS分别在(t2~t3)和(t6~t7)。而(t2~t3)和(t6~t7)时变压器初级电流分别小于(t0~t1)和(t4~t5)时的初级电流,故滞后桥臂比超前桥臂实现ZVS开关困难,特别是轻载时最为明显。 从理论上分析,S1、S2实现ZVS开关时,变压器次级处于续流阶段,谐振时由谐振电感释放能量,使谐振电容电压下降到零,从而实现ZVS,此时实现ZVS条件为:电感能量必须大于所有参与谐振的电容能量。即 LrIp2/2>(4Coss/3+Cxfmr)×U2in 式中:4Coss/3是考虑MOS管输出电容非线性等效电容值,Cxfmr是变压器绕组的分布电容。由上式可见,滞后桥臂实现ZVS主要靠谐振电感储能,轻载时能量不够大,因此滞后桥臂不易满足ZVS条件。 S3、S4实现ZVS开关时,变压器处于能量传递阶段。初级电流IP=-Io/n(n为变压器变比),初级等效电感Le=Lr+n2LO。所以根据ZVS条件,电感能量必须大于所有参与谐振的电容能量,应有Le(Io/n)2/2>(4Coss/3+Cxfmr)Uin2。由于Le(Io/n)2/2相当大,故即使轻载时超前桥臂也较容易满足ZVS条件。 6移相全桥PWM控制器 移相全桥PWM控制技术最关键的是器件的导通相位能在0~180°范围内移动,若控制不好,特别是左桥臂或右桥臂的两个开关管同时导通,将导致灾难性的后果。Unitrode公司生产的UC3875能提供0~100%占空比的控制,并且有必要的保护、译码及驱动功能,有四组驱动输出,每组的延时时间可控制,其控制电路如图4所示。E/A+接固定的2?5V电压(VREF=5V,R5、R9为10kΩ),作电压给定信号。E/A-接对应的输出电压和EA+比较,从而控制OUTA~OUTD的相位,最终控制输出电压。C/S+接控制信号(如初级过流信号等),当初级过流时,C/S+大于2?5V,UC3875停止输出驱动信号,从而将变换器输出关闭,防止了灾难事故的发生。驱动信号由OUTA~OUTD输出,并经TC4420扩流,由驱动变压器去驱动S1~S4MOS管,其延时时间由UC3875的7脚、15脚外接电阻确定,实际的驱动信号时序如图5所示。 图5驱动信号、变压器次级信号波形图 7结语 (1)换向死区时间的控制对实现零电压开关很重要。 (2)UC3875控制电路的控制部分和输出驱动部分供电电源应分开,否则移相时将引起频率变化。 (3)为了在宽范围内实现ZVS,要在变压器初级串一个谐振电感,但谐振电感不能太大,电感太大会带来占空比丢失,初级电流较大,导通损耗增大,电感发热等问题,并且效率大大降低。 根据中国电信总局1999年底对所有入网通信电源效率的要求:所有大于1kW的通信电源,其效率(从半载到满载)应大于90%。解决了谐振电感的发热损耗问题,也就解决了效率问题。也可采用全桥ZVZCSPWM电路,使超前桥臂实现ZVS,滞后桥臂实现ZCS,便可克服全桥ZVS的缺点,效率可达93%以上。 参考文献 1 Bill Andreycaf.Phase Shifted Zero Voltage Transition Design Considerations and the UC3875 PWM Controller.Product Applicacation Handbook,1995~ 1996 2张占松,蔡宣山.开关电源原理与设计 |
移相全桥ZVS变换器的原理与设计
- ZVS变换器(5333)
相关推荐
一文看懂移相全桥的原理及设计
本文开始介绍了移相全桥的定义以及移相全桥的拓扑结构,其次阐述了十二种移相全桥的工作模态,最后介绍了移相全桥ZVS变换器的原理与设计。
2018-03-07 08:59:36199242
8KW碳化硅全桥LLC解决方案
采用的三电平电路,用两个600V的Mosfet串联,来解决高母线电压带来的MOS管应力问题。 其次是高压下的开关损耗很大,使得我们必须选择软开关的电路拓扑。LLC变换器可以在全负载范围内实现ZVS,使
2018-10-17 16:55:50
ZVS全桥变换器ISL6752相关资料分享
概述:该ISL6752是INTERSIL公司生产的一款高性能,低引脚数的替代零电压开关(ZVS)全桥PWM控制器。像Intersil的ISL6551,它实现ZVS操作,通过驱动上桥的FET在一个固定
2021-05-17 06:53:57
全桥移相方案推荐
需要用全桥移相做一个电路,以下是我的配置1. 开关频率80KHZ,用PC40 EE70磁芯,输出功率3KW,请问是否可行2. 副边输出540VDC,采用什么样的整流方式好?考虑到电压非常大,还有什么好的处理方式呢?
2019-01-03 11:31:25
移相全桥出现的炸机的问题
我最近用的一个移相全桥拓扑,主芯片UC3875,触发驱动TPS2812,电路是稳定的这我可以确认(用了很多年了)。 现在做一个两线AC380V输入,DC65V输出的电源,在空载调试时,上电片刻炸机
2019-01-15 09:42:30
移相全桥控制的问题
图为阮新波的《全桥变换器的软开关技术》,其中“3.5 整流二极管的换流情况”,在ip不能满足副边电流后,副边的Lf强行续流,导致Dr2导通,进而导致变压器被短路。但是我有两个问题1. 此时变压器已经
2018-12-18 10:37:46
移相控制下的双路输出降压变换器不同的PCB布局对比分析
开关管Q1导通时的功率回路也将有助于提高EMI性能。图 4:移相控制下的U型EMI性能图 6:简化的EMI滤波器图 8:采用差模和共模滤波器的I型布局的EMI性能本文比较了移相控制下的双路输出降压变换器两种不同的PCB布局,可以看出,U型布局的EMI性能优于I型布局。
2020-10-21 12:46:33
BOOST升压变换器的基本原理是什么
容实现这个功能,这种升压变换器称为电容充电泵;如果使用电感实现这个功能,这种升压变换器称为BOOST变换器。另外,也可以将直流电压变为交流,然后使用高频变压器升压,如反激、正激、推挽、半桥和全桥等电源结构...
2021-12-29 06:01:10
DC/DC变换器中输出滤波器的比较
不能太小。2)第2类在这类变换器中,整流级电压的频率是开关频率的2倍。而且,在移相控制全桥等典型变换器中,很容易实现软开关,因此可以适当地提高开关频率,从而大大减小滤波元件LC的乘积值。可见,从输出
2013-01-22 15:54:30
DSP 移相 全桥逆变
需要一款DSP 的PWM 可以移相 类似于模拟器件UC3875的移相功能 能通过寄存器的值或DSP的外部引脚 来改变移相角度 希望专家帮忙推荐 项目急!
2018-05-14 03:31:12
LLC变换器设计要素(资料下载)
最近 LCC 谐振变换器备受关注,因为它优于常规串联谐振变换器和并联谐振变换器:在负载和输入变化较大时,频率变化仍很小,且全负载范围内切换可实现零电压转换(ZVS)。本文介绍了LLC 型谐振
2016-01-19 14:54:05
LLC谐振变换器的研究
LLC谐振变换器的研究谐振变换器相对硬开关PWM变换器,具有开关频率高、关断损耗小、效率高、重量轻、体积小、EMI噪声小、开关应力小等优点。而LLC谐振变换器具有原边开关管易实现全负载范围内的ZVS
2018-07-26 08:05:45
LLC谐振变换器的设计要素
最近LCC谐振变换器备受关注,因为它优于常规串联谐振变换器和并联谐振变换器:在负载和输入变 化较大时,频率变化仍很小,且全负载范围内切换可实现零电压转(ZVS)。本文介绍了LLC型谐振变换器的分析
2019-08-08 11:11:37
STM32F334 HRTIM形成移相全桥波形有异常
HRTIM形成移相全桥波形,Q1 Q2超前臂Q3 Q4滞后臂HRTIM1_CHC1-Q1HRTIM1_CHC2-Q2HRTIM1_CHB1-Q3HRTIM1_CHB2-Q4以下是CUBE里面的设置
2019-03-15 08:35:33
STM32单片机用于移相控制的全桥PWM变换器
关注、星标公众号,不错过精彩内容来源:STM32单片机用于移相控制的全桥PWM变换器是中大功率DC-DC变换电路中最常用的电路之一,由于其可以实现开关管的软开关特性,在数字电源的设计中被...
2021-08-09 09:21:21
「分享」移相全桥DC-DC变换器建模及仿真
本篇我们将基于森木磊石自主研发的PPEC Workbench带领大家进行电路参数设计,并利用Simulink进行仿真模型搭建,验证移相全桥变换器的工作状态。一、电路设计(一)拓扑设计之前的课程中
2023-12-04 11:12:41
【AT91SAM9261申请】大功率高频移相全桥电动汽车充电桩
/DC变换电路,因移相全桥ZVZCS PWM变换器集ZVS PWM变换和ZCS PWM变换的优势于一身,是目前最成功、应用最普遍的一类软开关全桥变换器,故选其作为充电电源的DC/DC变换电路。移相全桥
2016-05-23 15:41:54
【实操】移相全桥DC-DC变换器快速设计与开发
前面我们分享了移相全桥电路的设计与电路建模仿真,本篇将基于PPEC-86CA3A移相全桥数字电源控制芯片以及PPEC Workbench开发软件带领大家进行实际移相全桥DC-DC变换器的设计与开发
2023-12-21 10:16:18
【拓扑资料】移相全桥拓扑组成及原理详解
丢失
ZVS移相全桥DC/DC变换器在滞后臂开关管关断后会出现副边占空比丢失现象。
此时原边电流反向,负载电流进入换向阶段,原边电流较小,不能供给负载电流,导致变压器副边两个整流管都导通,电压被二极管
2023-11-16 15:18:03
【精选推荐】移相全桥电源12种工作模态
ZVS),来实现恒频软开关,提升电源的整体效率与EMI性能,当然还可以提高电源的功率密度。 上图是移相全桥的拓扑图,各个元件的意义如下:Vin: 输入的直流电源 T1-T4: 4个主开关管,一般
2021-05-08 06:30:00
【罗姆SiC-MOSFET 试用体验连载】基于Sic MOSFET的直流微网双向DC-DC变换器
项目名称:基于Sic MOSFET的直流微网双向DC-DC变换器试用计划:申请理由本人在电力电子领域(数字电源)有五年多的开发经验,熟悉BUCK、BOOST、移相全桥、LLC和全桥逆变等电路拓扑。我
2020-04-24 18:08:05
【资料】脉宽调制DC_DC全桥变换器的软开关技术-阮新波严仰光-学习文档PDF电子书资料
脉宽调制(PWM)DC/DC全桥变换器广泛应用于中大功率场合,因此研究其软开关技术具有十分重要的意义。本书共分为八章,介绍电力电子变换器的基本类型和PWM DC/DC全桥变换器的基本工作原理,系统
2022-07-28 14:27:36
什么是移相全桥?这12种模式给出全解析(1)
ZVS),来实现恒频软开关,提升电源的整体效率与EMI性能,当然还可以提高电源的功率密度。上图是移相全桥的拓扑图,各个元件的意义如下:Vin:输入的直流电源T1-T4:4个主开关管,一般是MOSFET或
2020-08-19 07:39:08
什么是移相全桥?这12种模式给出全解析(2)
过程。这12个过程就构成了移相全桥的一个完整的工作周期,只要有任何一个过程发生偏离或异常,将会影响到移相全桥的ZVS效果,甚至会导致整个电源不能正常工作。接下来说说移相全桥存在的问题问题一:滞后臂较难
2020-08-20 07:53:41
利用PPEC 控制器来实现移相全桥电路控制分享
今天给大家介绍利用PPEC 控制器来实现移相全桥电路的控制。 首先,打开PPEC workbench 软件。点击新建工程来创建一个空白的项目工程文件。 在弹出的对话框中,选择移相全桥的拓扑类型,点击
2022-05-19 10:26:28
功率变换器中的功率磁性元件分布参数
:正激、反激、推挽、全桥移相、LLC等,磁集成,磁耦合;控制:控制芯片 控制电路,变压器环节 滤波器环节;封装:PCB绕组、绕组 同步MOS、超薄磁元件;元件:有源器件、电容、磁性元件(设计 定制
2021-11-09 06:30:00
双向变换器
本人在做双半桥双向变换器,当变换器工作与BOOST状态时,输出电压值总是打不到稳态值。低压侧输入电压为24V,高压侧输出电压为100V,现在高压侧输出电压只有96V。不知道什么原因。跪求大侠解答,不胜感激。
2016-04-14 21:18:38
变压器副边有源箝位式ZVZCS FB PWM变换器主电路分析
变压器副边有源箝位式ZVZCS FB PWM变换器主电路分析分析了一种变压器副边采用有源箝位的ZVZCS全桥移相式PWM变换器的主电路拓扑结构。该变换器适合于高电压、大功率(>10
2009-12-16 10:48:29
基于移相全桥主电路的软开关电源设计全解
开关电源采用了全桥变换器结构,使用MOSFET作为开关管来使用,参数为1000V/24A.采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS.电路结构简图如图1,VT1
2018-09-30 16:18:15
基于移相控制的多路输出降压变换器两种不同PCB布局
输出的变换器传导EMI进行了对比。同时,该电路采用移相控制,减小输入电流纹波,从而优化输入滤波器。从测试结果可以看出,U型布局的EMI性能优于I型布局的EMI性能,尤其是在高频的部分。 图4:移相控制
2019-03-13 06:45:01
如何对移相全桥谐振ZVS变换器进行测试?
ZVS-PWM谐振电路拓扑的电路原理和各工作模态分析200W移相全桥谐振ZVS变换器关键参数设计如何对200W移相全桥谐振ZVS变换器进行测试?
2021-04-22 06:25:56
浅析基于碳化硅MOSFET的谐振LLC和移相电路在新能源汽车的应用
电流急剧增大,对MOSFET体二极管反向性能要求更高,影响变换器的可靠性。移相电路实质是一个传统PWM调制,开关频率是固定的。只要改变移相角度就能够实现宽输入宽输出范围。唯一需要注意的是移相全桥电路存在
2016-08-25 14:39:53
电池驱动系统的DC-DC变换器选择
较小,高频功率变压器的利用率高等优点。而且全桥DC-DC变换器适合做软开关管控制,减小变换器中的开关管损耗提高转化效率。 三相全桥DC-DC变换器结构,三相的结构将电流、损耗均分到每相中,适合大功率
2023-03-03 11:32:05
请问controIsuite里的移相全桥PCB文件从哪里下载呢?
你好,在controIsuite里的移相全桥的硬件包里,只有Gerbers文件,请问PCB文件从哪里下载呢?
2018-10-08 16:59:01
谐振变换器的分类与区别
事先说明:其实本质上是对他人论文的说明,本质上是拾人牙慧,目录LLC的意义所用参考论文谐振变换器的分类与区别串联谐振 DC/DC 变换器并联谐振 DC/DC 变换器串并联谐振 DC/DC 变换器重点说明LLC的意义用谐振达到软启动的目的ZCS(零电流导通)与ZVS(零电压导通)
2021-10-29 06:48:52
资料分享:LLC 谐振变换器的研究
摘要:高频化、高功率密度和高效率,是 DC/DC 变换器的发展趋势。传统的硬开关变换器限制了开关频率和功率密度的提高。移相全桥 PWM ZVS DC/DC 变换器可以实现主开关管的 ZVS,但滞后
2019-09-28 20:36:43
ZVS 移相全桥变换器开关管等损耗控制策略
ZVS 移相全桥变换器运行时超前桥臂和滞后桥臂开关管损耗明显不同,使得大功率变换器散热器设计困难,且影响了变换器可靠运行。本文在分析ZVS 移相全桥变换器超前桥臂和滞
2009-04-06 11:53:2866
新型ZVS 软开关直流变换器的研究
新型ZVS 软开关直流变换器的研究:摘要:综述了几种新型的零电压(ZVS)DC/DC变换器,并分析了变换器的优缺点,研究了一种新型MOSFET作为开关器件的三电平ZVS变换器,并分析了这种
2009-06-19 19:49:3358
300V ZVZCS直流稳压电源设计
摘要:为克服零电压开关(zvs)变换器自身存在的初级环流较大,以及滞后臂开关实现ZVS受负载电流限制等缺点.利用零电压零电流(zvzcs)~桥变换器设计了一种用于某新型金属表面
2010-05-27 11:08:3066
电动汽车车载充电机(OBC)与车载DC_DC转换器 3.2 移相全桥ZVS变换器 #硬声创作季
电源汽车电子车载电子DC转换器ZVS移相全桥充电机充电桩
jf_06209345发布于 2022-09-13 22:30:47
改进型全桥移相ZVS-PWM DC/DC变换器
改进型全桥移相ZVS-PWM DC/DC变换器
摘要:介绍了一种能在全负载范围内实现零电压开关的改进型全桥移相ZVS-PWM DC/DC变换器。在分析
2009-07-11 10:16:591354
电流模式控制倍流整流器ZVS PWM全桥DC-DC变换器的研
电流模式控制倍流整流器ZVS PWM全桥DC-DC变换器的研究
1、引言 传统的PWM DC/DC 移相全桥零电压软开关(ZVS)变换器利用变压器的漏感或/和原边串联电感和开关管
2009-11-10 10:17:341902
零电压开通(ZVS(PWM DC/DC变换器电路图
零电压开通(ZVS(PWM DC/DC变换器电路图
拓扑结构:Buck DC/DC ZVS PWM 变换器。主开关T1(包含反并联二极管D1),辅助二
2010-03-03 15:44:586600
双向半桥零电压开关变换器的研究
文中介绍了双向半桥零电压(ZVS)变换器的工作原理和不同时间段的等效电路图,以及给出了实现软开关的条件。并完成了控制电路的设计,仿真结果验证了电路结构和控制方法的正确
2011-09-15 16:53:3155
零电压开关谐振功率变换
题以一个表演结束。ZVS变换器与它们的比较方波同行,及总结典型的应用。 零电压开关综述最好定义零电压开关。常规方波功率转换在开关的共振时间开关转换。在大多数情况下,它可以方波功率利用恒定的关闭时间控制,改变转换频率,或保持时间输出电
2017-06-09 15:09:2510
零电压开关谐振功率变换的应用笔记
。本课题最后对ZVS变换器与方波变换器的性能进行了比较,并对典型应用进行了总结。 介绍 谐振、准谐振功率变换技术提出了替代性解决冲突的方波转换的设计目标的进展;在高开关频率从高电压源获取高效运行。目前,传统的方法目前仍处于生产主流。然而,
2017-06-27 10:51:4810
无源钳位ZVZCS变换器的关键参数的设计方法与仿真验证
本文结合光伏并网逆变器的特点介绍了一种无源钳位的ZVZCS变换器,此变换器较好地实现了超前臂的ZVS、滞后桥臂的ZCS,降低了系统的损耗;且原副边占空比丢失较传统的ZVS变换器有所减小
2019-05-09 08:03:002431
全桥移相ZVS控制器LTC3722-X的工作原理与如何实现自适应延时控制
随着全桥移相ZVS技术的推出,使该技术在大功率领域中得到了广泛的应用。通过引入超前臂和滞后臂的概念,人们提出了 多种实现ZVS的新方法,并得到了广泛的实际应用。但是,全桥移相ZVS变换器仍然存在如下一些缺点:
2020-04-25 17:50:007182
逆变式切割电源的极点配置双闭环控制资料详细说明
switched,PS-FB-ZVS)变换器。首先介绍 PS-FB-ZVS 变换器的小信号模型,然后分析基于极点配置理论的双闭环控制系统,进行逆变式切割电源的参数整定,最后通过仿真基金项目:国家
2020-06-08 08:00:000
改进型移相全桥ZVS DC-DC变换器的特点应用及控制电路设计
传统的PWM DC/DC 移相全桥零电压软开关(ZVS)变换器利用变压器的漏感或/和原边串联电感和开关管的外接或/和寄生电容之间的谐振来实现零电压软开关,由于超前桥臂和滞后桥臂实现零电压软开关ZVS
2021-03-09 14:09:007720
具有移相控制的ZVS全桥DC-DC斩波变换器
具有移相控制的ZVS全桥DC-DC斩波变换器(通信电源技术杂志简介)-具有移相控制的ZVS全桥DC-DC斩波变换器
2021-08-31 18:56:3838
移相ZVS变换器使用MOSFET器件的潜在风险分析
在过去的几年中,对具有足够效率来管理大功率的系统的市场需求促使开关电源设计人员开发具有低电损耗的拓扑。带PWM相移控制全桥变换器是一种非常流行的拓扑结构。它能在大功率下实现高效率,并融合了硬开关技术
2022-04-01 16:18:391881
评论
查看更多