一种新颖的ZVZCSPWM全桥变换器 摘要:提出了一种新颖的零电流零电压开关(ZCZVS)PWM全桥变换器,通过增加一个辅助电路的方法实现了变换器的软开关。与以往的ZCZVSPWM全桥变换器相比,所提出的新颖变换器具有电路结构简单、整机效率高以及电流环自适应调整等优点,这使得它特别适合高压大功率的应用场合。详细分析了该变换器的工作原理及电路设计,并在一台功率为4kW,工作频率为80kHz的通信用开关电源装置上得到了实验验证。 关键词:全桥变换器;零电压开关;零电流开关;软开关;脉宽调制
0 引言 移相全桥零电压PWM软开关(PS-FB-ZVS)变换器与移相全桥零电压零电流PWM软开关(PS-FB-ZVZCS)变换器是目前国内外电源界研究的热门课题,并已得到了广泛的应用。在中小功率的场合,功率器件一般选用MOSFET,这是因为MOSFET的开关速度快,可以提高开关频率,采用ZVS方式,就可将开关损耗减小到较为理想的程度[1]。而在高压大功率的场合,IGBT更为合适。但IGBT的最大的缺点是具有较大的开关损耗,尤其是由于IGBT的“拖尾电流”特性,使得它即使工作在零电压情况下,关断损耗仍然较大,要想在ZVS方式下减少关断损耗,则必须加大IGBT的并联电容。然而由于轻载时ZVS很难实现(滞后臂的ZVS更难实现),因此ZVS方案对于IGBT来说并不理想。若采用常规的移相全桥软开关变换器,其优点是显而易见的,即功率开关器件电压、电流额定值小,功率变压器利用率高等,但是它们却也存在着各种各样的缺点:有的难以适用于大功率场合;有的要求很小的漏感;有的电路较为复杂且成本很高[2][3][4][5][6]。 本文提出了一种新颖的ZVZCS PWM全桥变换器,它能有效地改进以往所提出的ZVZCS PWM全桥变换器的不足。这种变换器是在常规零电压PWM全桥变换器的次级增加了一个辅助电路,此辅助电路的优点在于没有有损元件和有源开关,且结构简单。次级整流二极管的电压应力与传统PWM全桥变换器相等,而ZCS具有最小的环路电流值。电流环能够根据负载的变化情况自动进行调整,从而保证了负载在较大范围内变化时变换器同样具有较高的效率。 1 工作原理 该ZVZCS PWM全桥变换器主电路如图1所示。它是在传统的零电压PWM全桥变换器的次级增加了一个辅助电路,同时,该变换器还采用了移相控制方式。在图1中,S1和S3分别超前于S4和S2一个相位,称S1和S3组成的桥臂为超前臂,S2和S4组成的桥臂为滞后臂。C1和C3分别是S1和S3的外接电容。Lr是谐振电感,它包括了变压器的漏感。每个桥臂的两个功率管成180°互补导通,两个桥臂的导通角相差一个相位,即移相角,通过调节移相角的大小来调节输出电压。超前臂开关管实现零电压导通和关断的工作原理与ZVSPWM全桥变换器相同,而滞后臂开关管是通过辅助电路来实现零电流导通和关断的,由于输出电感的储能用来实现超前臂开关管的ZVS,所以可以用外接电容来减小开关损耗。通过对Ch放电,流过变压器的原边电流在谐振周期内减小到零,从而实现了滞后桥臂的ZCS。
图1 新 颖ZVZCS PWM全 桥 变 换 器 主 电 路 图 为了便于分析变换器的稳定工作状态,而作如下假设: ——输出滤波电感Lf足够大,在一个开关过程中可以等效为一个恒流源。 在半个工作周期内,变换器有8种开关模态。因为,电流环能够根据负载的变化而作相应的调整,所以,这些开关模态在负载较轻的情况下变化很小。 1.1 变换器在满载条件下工作 假定变换器工作在满载条件下,其各个模态的等效电路及主要波形图如图2和图3所示。
(a) 模 态1[t0,t1] (b) 模 态2[t1,t2] (c) 模 态3[t2,t3] (d) 模 态4[t3,t4] (e) 模 态5[t4,t5] (f) 模 态6[t5,t6]
(g) 模 态7[t6,t7] (h) 模 态8[t7,t8] 图2 各 个 开 关 模 态 的 等 效 电 路
图3 主 要 波 形 图 1)开关模态1[t0,t1] 在t0时刻,开关管S1及S4导通,输入电压Vs加到了变压器的漏感Lr上,原边电流ip从零开始线性增加,在t1时刻,电流ip增加到与输出电感电流值相等。电流ip的变化式如式(1)所示。 ip(t)=(Vs/Lr)t(1) 2)开关模态2[t1,t2] t1时刻后,开关管S1和S4继续导通,输入功率传到了变压器的次级。辅助线圈的漏感Llks与吸持电容Ch产生谐振,给Ch充电,Ch上的电压及电流可由式(2)及式(3)得到。 vch(t)=[1-cos(ωst)](2) ich=-sin(ωst)(3) VH=(4) 式中:ωs=; n=N1/N2; m=N3/N4。 在t2时刻,Ch上的电压达到最大值VH,同时电流减小为零。为了防止二极管Dd在该工作模态下导通,Ch的最大电压值VH应当设计得比输入电压反射到次级的电压Vs/n小。 3)开关模态3[t2,t3] 当Ch的充电电流减小到零的时候,Dc零电流关断,Ch上的电压保持在VH。原边电流仍被传递到输出端。 4)开关模态4[t3,t4] 在t3时刻,S1关断,原边电流给电容C1充电,使C3放电,变压器原边电压vAB开始线性下降,即 vAB(t)=Vs-t(5) 式中:Io为输出电流; Ceq=C1+C3。 变压器的次级电压vsec以相同的速率下降,直到t4时刻其值与Ch上的电压值相等为止。 5)开关模态5[t4,t5] 当vsec下降到VH时,二极管Dd导通,vsec被箝位在Ch的电压值。变压器的原边电压vAB还以与先前同样的速率下降到零,而vsec则缓慢地下降。在该模态下,因为与原边电压相比,vsec的下降非常缓慢,因此可以把vsec看作常数。变压器次级电压反射到初级上的电压值和初级电压值之差加在了谐振电感Lr上,变压器原边电流和电压分别按式(6)及式(7)规律下降。 ip(t)=cos(ωbt)(6) vAB(t)=nVH-sin(ωbt)(7) 式中:ωb=。 到t5时刻,C3上的电量被完全释放,C3电压下降到零,同时开关管S3零电压导通。原边电压vAB也下降到零。 6)开关模态6[t5,t6] 该模态下,变压器次级电压反射到初级上的电压加到了变压器的漏感上,原边电流以更快的速率下降到零。
图4 Ch不同最大电压值VH对应的ZVS范围 ip(t)=cos(ωbtm5)-sin(ωct)(8) 式中:ωc=; tm5=t5-t4; Zc=。 变压器次级电压按式(9)规律下降。 vsec(t)=VHcos(ωct)(9) 7)开关模态7[t6,t7] 原边电流复位,整流二极管关断。电容Ch通过Dd放电,向负载提供电流。变压器次级电压按式(10)规律下降到零。 vsec(t)=VHcos(ωctm6)-t(10) 式中:tm6=t6-t5。 8)开关模态8[t7,t8] Ch完全放电,输出感应电流通过续流二极管Df续流。在t8时刻,开关管S4的驱动脉冲下降为零,S4零电流关断。 1.2 变换器在轻载条件下工作 假定变换器工作在轻载条件下,随着负载电流的降低,Ch在模态7时不能完全放电,其上电流在t10时刻以前连续地提供给负载,其电压的最大值与最小值之间的差值可通过对自身的放电电流积分来获得,如式(11)所示。 =ICh(t)dt≌(1-D)(11) 式中:Ts为开关周期。 由式(11)可以看出,在带轻载的条件下,式(3)所表示的Ch上的电流产生如下变化。 iCh(t)=-()sin(ωct) ?≌-(1-D)sin(ωct)(12) 从式(12)可以看出,环路电流对吸持电容的充放电随着负载电流的降低而降低,也就是说电流环可根据负载的情况自动进行调整。 2 电路设计 2.1 超前臂的ZVS条件 为了实现超前臂的ZVS,开关电压应当在死区时间内下降到零,即: tdead>tm4+tm5(13) 式中: tm4=t4-t3=nCeq(14) tm5=t5-t4=arcsin=arcsin(15) 从式(15)可以看出,保证开关管实现ZVS的最小电流可由式(16)得到。 =n2VH(16) 不同的吸持电容Ch数值与最大电压值VH所对应的ZVS范围如图4所示。开关管超前臂的关断损耗可通过给IGBT增加外接缓冲电容来减小。从图4还可以看出大电容Ceq对ZVS范围的限制。因此,Ceq的选择应综合考虑ZVS范围和超前臂的开关关断损耗。 2.2 滞后臂的ZCS条件 吸持电容的归一化值如式(17)所示。 Chn=(17) 图5所示为吸持电容不同归一化值所对应的原边电流的复位情况。为了实现滞后臂的ZCS,Ch的能量应该足够大,从而通过Lr使原边电流复位,且原边电流应当在滞后臂关断之前减小到 图5不同归一化Ch值对应的原边电流的复位零。从式(11)、式(12)、式(15)、式(16)、式(17)可得到式(18)。 arcsin(1-D)(18) 从式(18)和图5可以看出,为了确保ZCS,应当增加Ch或VH的值。但是,VH的最大值不能高于输入电压反射到次级的电压Vs/n;同样,大电容Ch增大了环路电流,而环路电流又通过Ch间接加到了负载。综合考虑,软开关在变换器功耗方面的效果不仅与开关损耗的减小有关,还与由软开关引起的附加导通损耗有关。为了获得预期的效率,要求在设计时Ch的值取得越小越好,从而使附加导通损耗最小化。
图5 不同归一化Ch值对应的原边电流的复位 2.3 输出耦合电感 为了保证辅助电路二极管Dc的软变换,输出耦合电感的漏感Llks应当满足式(19)。 Llks<(19) 式中:Dmin为最小占空比。 给Ch充电的谐振电流也耦合到了输出电感电流中,从而增加了输出电容的电流纹波。因此,Llks应当在满足式(19)的条件下尽量取大,以减小谐波电流的有效值。 3 实验结果 为了验证ZVZCS PWM全桥变换器的工作原理和性能,在实验室完成了一台80V/50A,80kHz的样机,其电路如图6所示,参数如下:
图6 样机电路原理图 输入直流电压Vs=630(1±10%)V; 输出直流电压Vo=80V; 变压器原副边匝比N1∶N2=5.33,变压器原边漏感Lr=9μH; 输出滤波电容Co=10000μF(电解电容); 输出滤波电感Lf=20μH,N3∶N4=1.12,漏感Llks=1.8μH; 开关管S1~S4(IGBT) IRGPH50KK2(1200V,30A); 输出整流二极管Dc,Dd,Df,Drec C60P40FE(400V,60A); C1=C3=1nF; Ch=0.47μF(电解电容); R=30Ω,C=2.2nF,C′=6.6nF; 开关频率f=80kHz。 图7给出了实验波形。从图7(a)可以看出,在谐振周期内,原边电流减小到零,从而消除了原边的拖尾电流。从图7(c)可以看出,通过S4的电流在驱动脉冲下降为零之前已经减小到零,从而S4实现零电流关断。从图7(d)可以看出,在死区时间内,S1的电压减小到零,从而S1实现零电压导通。从图7(e)和(f)可以看出,在一个谐振周期内,Ch在满载时完全放电,而在轻载时却没有完全放电,使得环路电流根据负载条件变化作适应性调整。 图8给出了根据原理样机得到的效率曲线。满载时效率最高,达到94%。
(a) 变压器原边电压和电流的波形 (b) 变压器次级电压和吸持电容电压波形 (c) 滞后臂S4的零电流关断波形
(d) 超前臂S1的零电压导通波形 (e) 满载时吸持电容上的电压电流波形 (f) 25%负载时吸持电容上的电压电流波形 图7 实验波形
图8 原理样机效率曲线 4 结语 本文提出了一种新颖的ZVZCS PWM全桥变换器,并具体分析了它的工作原理、电路设计及性能。最后通过一台4kW的原理样机的试验结果,证明了该变换器具有以下主要优点: ——所采用的辅助电路无有源开关; ——次级整流二极管具有与传统的全桥PWM变换器相同的电压应力值; ——对吸持电容充放电的环路电流可根据负载的变化进行自适应调整; ——辅助电路二极管Dc实现了软变换; ——能够使变换器在开关频率为80kHz且满载时效率高达94%。 |
一种新颖的ZVZCSPWM全桥变换器
- ZVZCSPWM(5026)
相关推荐
450W多路DC/DC变换器的相关资料分享
1 概述450W多路DC/ DC 变换器是一种直流变换开关电源,其输入电压为直流27V ,电源输出分别为直流±20V 10A 和5V 10A 三种不同的类型,其中电源的输入与输出隔离,且输出电源
2021-11-17 08:02:27
8KW碳化硅全桥LLC解决方案
高压输入下,高开关频率成为可能。 下图给出了典型三电平全桥谐振变换器的电路。 三电平全桥LLC变换器 三电平变换器有其独有的优点,比如每个Mosfet只需要承受一半的输入电压;当然,也有缺点,比如
2018-10-17 16:55:50
一种300w的交流-直流变换器设计方案
设计并演示了一种300w的交流-直流变换器,其效率> 94%在90vac和100%负载条件下,估计外壳尺寸为300cc包括图腾柱PFC输入级,LLC dc-dc级和同步整流输出阶段。该
2023-06-16 10:30:50
一种宽输出范围的混合谐振半桥正反激变换器控制方法
占空比即可实现宽输出电压,就可以完成5~30V的输出电压范围调节,两种控制方案结合起来就可以实现十倍宽范围和全范围ZVS工作的高效率的电源转换应用。 小结:通过混合不对对称半桥和对称半桥谐振变换器的控制
2023-03-23 14:19:33
一种抗干扰能力较强的DC‑DC变换器
技术总结本发明公开了一种抗干扰能力较强的DC‑DC变换器,包括电连接在一起的雷击浪涌防护器、电磁脉冲防护器EMP、浪涌抑制器、EMI滤波器和电压转换电路,所述雷击浪涌防护器包括电连接在一起的压敏电阻
2021-11-17 07:15:56
BOOST升压变换器的基本原理是什么
将二个电压叠加就实现的电压的提升,这就是升压变换器的基本原理。使用储能元件从输入电源获取能量得到一个电压,然后将它和输入电压顺向串联,就可以实现升压功能。电容和电感是二种常用的储能元件,如果使用电
2021-12-29 06:01:10
Buck-Boost变换器的两种工作方式解析
Buck变换器也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。图中,Q为开关管,其驱动电压一般为PWM(Pulse、width、modulation脉宽调制)信号,信号周期为Ts
2021-03-18 09:28:25
DC-DC变换器最基础的主要有三种
上一节提到的开关电源的系统框图中,DC-DC变换器是其中一个重要的组成部分DC-DC变换器最基础的主要有三种:Buck变换器,Boost变换器和Buck-Boost变换器Buck变换器:即降压变换器
2021-10-29 06:52:05
DC-DC变换器的基本电路
DC-DC是英语直流变直流的缩写,所以DC-DC电路是某直流电源转变为不同电压值的电路。DC-DC变换器的基本电路有升压变换器、降压变换器、升降压变换器三种。在同一电路中会有升压反向、降压升压等功能
2021-11-17 06:37:14
DC/DC变换器中输出滤波器的比较
软开关技术,使得开关频率得以提高,从而进一步减小滤波元件的体积。 本篇结合半波整流和全波整流方式,对恒频PWM变换器和谐振类变换器中的整流级电压进行了归类,在考虑谐波含量、开关频率、软开关技术的情况下
2013-01-22 15:54:30
DCDC变换器建模
DCDC变换器建模一、开关电源建模基本概念二、CCM下变换器建模1.状态平均的概念2.推导变换器的状态空间平均方程3.对变换器的状态空间平均方程进行线性化处理4.平均开关模型三、DCM下变换器建模
2021-10-29 08:57:11
DCDC变换器的原理
了一大热门。现代开关电源的需求越来越高。向着高空间利用率,高能量密度,高转换效率的方向追求。其中,LLC拓扑是当前开关变换器中很流行的、很热门的一种变换器。主要是由谐振电感,励磁电感和谐振电容组成。利用谐振网络的谐振过程,电流和电压会周期性的出现过零点的情况,从而软开关提供了机会。
2021-12-28 07:48:23
DCDC变换器轻载时三种工作模式
的输出负载从满载到轻载然后到空载变化的过程中,系统的工作模式也会发生相应的改变。下面以降压型Buck变换器为例说明DCDC变换器轻载时的工作模式。降压型Buck变换器在轻载有三种工作模式:突发模式、跳
2016-08-31 17:01:16
DCDC变换器轻载时的三种工作模式
。 下面以降压型Buck变换器为例说明DCDC变换器轻载时的工作模式。降压型Buck变换器在轻载有三种工作模式:突发模式、跳脉冲模式和强迫连续模式。下面将详细的阐述了这三种模式的工作作原理及其
2019-03-14 18:00:00
FSFR1800电源开关在半桥谐振变换器中的典型应用
FSFR1800电源开关(FPS)在半桥谐振变换器中的典型应用。 FSFR系列包括专为高效半桥谐振转换器设计的高度集成的功率开关
2020-06-15 16:18:50
LLC变换器设计要素(资料下载)
最近 LCC 谐振变换器备受关注,因为它优于常规串联谐振变换器和并联谐振变换器:在负载和输入变化较大时,频率变化仍很小,且全负载范围内切换可实现零电压转换(ZVS)。本文介绍了LLC 型谐振
2016-01-19 14:54:05
LLC谐振变换器的研究
LLC谐振变换器的研究谐振变换器相对硬开关PWM变换器,具有开关频率高、关断损耗小、效率高、重量轻、体积小、EMI噪声小、开关应力小等优点。而LLC谐振变换器具有原边开关管易实现全负载范围内的ZVS
2018-07-26 08:05:45
LLC谐振变换器的设计要素
最近LCC谐振变换器备受关注,因为它优于常规串联谐振变换器和并联谐振变换器:在负载和输入变 化较大时,频率变化仍很小,且全负载范围内切换可实现零电压转(ZVS)。本文介绍了LLC型谐振变换器的分析
2019-08-08 11:11:37
STM32单片机用于移相控制的全桥PWM变换器
关注、星标公众号,不错过精彩内容来源:STM32单片机用于移相控制的全桥PWM变换器是中大功率DC-DC变换电路中最常用的电路之一,由于其可以实现开关管的软开关特性,在数字电源的设计中被...
2021-08-09 09:21:21
U/F变换器和F/U变换器
体积小、成本低的优点,但是外围元件较多,精度稍差些。模块式变换器一般做成不可逆的专用变换器,通常将U/F和F/U设计成两种独立的模块。其优点是外围元仵少,一般只有调零和调满刻度的元件在集成块的外面。本节以VFC100同步型U/F、F/U变换器和LMx31为例介绍U/F,F/U变换器。
2011-11-10 11:28:24
「分享」移相全桥DC-DC变换器建模及仿真
本篇我们将基于森木磊石自主研发的PPEC Workbench带领大家进行电路参数设计,并利用Simulink进行仿真模型搭建,验证移相全桥变换器的工作状态。一、电路设计(一)拓扑设计之前的课程中
2023-12-04 11:12:41
【AT91SAM9261申请】大功率高频移相全桥电动汽车充电桩
/DC变换电路,因移相全桥ZVZCS PWM变换器集ZVS PWM变换和ZCS PWM变换的优势于一身,是目前最成功、应用最普遍的一类软开关全桥变换器,故选其作为充电电源的DC/DC变换电路。移相全桥
2016-05-23 15:41:54
【实操】移相全桥DC-DC变换器快速设计与开发
。一、移相全桥变换器设计与开发1、外围电路设计与硬件平台搭建1)外围电路设计这里给出了PPEC-86CA3A移相全桥数字电源控制芯片的采样、PWM驱动以及硬件保护等外围电路设计图,大家可参考下图进行
2023-12-21 10:16:18
【罗姆SiC-MOSFET 试用体验连载】基于Sic MOSFET的直流微网双向DC-DC变换器
项目名称:基于Sic MOSFET的直流微网双向DC-DC变换器试用计划:申请理由本人在电力电子领域(数字电源)有五年多的开发经验,熟悉BUCK、BOOST、移相全桥、LLC和全桥逆变等电路拓扑。我
2020-04-24 18:08:05
【资料】脉宽调制DC_DC全桥变换器的软开关技术-阮新波严仰光-学习文档PDF电子书资料
脉宽调制(PWM)DC/DC全桥变换器广泛应用于中大功率场合,因此研究其软开关技术具有十分重要的意义。本书共分为八章,介绍电力电子变换器的基本类型和PWM DC/DC全桥变换器的基本工作原理,系统
2022-07-28 14:27:36
【转】准谐振软开关双管反激变换器
一种准谐振软开关双管反激变换器。该变换器具有双管反激变换器的优点,所有开关管电压应力钳位在输入电压,因此,可选取低电压等级、低导通电阻MOSFET以提高变换器的效率、降低成本。利用谐振电感与隔直电容
2018-08-25 21:09:01
串联谐振变换器
谐振网络通常由多个无源电感或电容组成,由于元件个数和连接方式上的差异。常见实用的谐振变换器拓扑结构大致分为两类:一类是负载谐振型,另一类是开关谐振型。负载谐振型变换器是一种较早提出的结构,注重电源
2020-10-13 16:49:00
为什么推挽变换器不像半桥变换器采取隔直电容的办法解决磁通不平衡问题??
半桥变换器的隔直电容对变压器偏磁的自动平衡很巧妙,为什么推挽不能采取同样的措施呢??学生party一枚刚学电源求解答!!
2017-03-16 22:14:38
利用AP的高频推挽DC-DC变换器设计方案
摘要:为了适应车载用电设备的需求,本文给出了一种高频推挽DC-DC变换器设计方案。该方案采用推挽逆变-高频变压-全桥整流设计了24VDC输入-220VDC输出、额定逆变输出功率600W
2018-09-29 16:43:21
功率变换器中的功率磁性元件分布参数
功率变换器中的功率磁性元件作用:起到磁能的传递和储能作用,是必不可少的元件。特点:体积大、重量大、损耗大、对电路性能影响大。挑战:对变换器功率密度影响很大,成为发展瓶颈。功率变换器技术与磁性元件拓扑
2021-11-09 06:30:00
双向变换器
本人在做双半桥双向变换器,当变换器工作与BOOST状态时,输出电压值总是打不到稳态值。低压侧输入电压为24V,高压侧输出电压为100V,现在高压侧输出电压只有96V。不知道什么原因。跪求大侠解答,不胜感激。
2016-04-14 21:18:38
双管正激变换器有什么优点?
由于正激变换器的输出功率不像反激变换器那样受变压器储能的限制,因此输出功率较反激变换器大,但是正激变换器的开关电压应力高,为两倍输入电压,有时甚至超过两倍输入电压,过高的开关电压应力成为限制正激变换器容量继续增加的一个关键因素。
2019-09-17 09:02:28
反激变换器
大家好,我现在要设计一个电源,输入范围18-72,输出24,300w功率,实现输入输出全隔离。要实现升降压,所以想选择反激变换器,现在有几个问题1、反激变换器书上介绍只有在CCM模式下为升降压模式
2016-12-04 18:31:07
反激变换器原理
是不需要输出滤波电感(滤波电感在所有正激拓扑中都是必需的)。在多输出电源,这一点对小变换器的体积。降低成本尤为重要) [hide][/hide]
2009-11-14 11:36:44
反激变换器的闭环控制
=oxh_wx3、【周启全老师】开关电源全集http://t.elecfans.com/topic/130.html?elecfans_trackid=oxh_wx复习电力电子技术的时候想起来老师说过boost和反激变换器只能采用双环控制,不能用单环,原因上课讲过但是没认真听,所以来请教一下各位,谢谢大家了
2019-06-26 23:42:07
变压器副边有源箝位式ZVZCS FB PWM变换器主电路分析
变压器副边有源箝位式ZVZCS FB PWM变换器主电路分析分析了一种变压器副边采用有源箝位的ZVZCS全桥移相式PWM变换器的主电路拓扑结构。该变换器适合于高电压、大功率(>10
2009-12-16 10:48:29
变形的半桥式变换器电路图
变形的半桥式变换器电路图对于高压输入,大功率输出的情况下,一般采用如图所示的电路方式。在电路中,开关器件V1、V2为一组,V3、V4为一组,双双串联,可减少单管耐压值。在实际应用电路中开关器件V1
2009-10-24 09:32:22
同轴变换器电路就能实现高效率的电路匹配
1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。
2019-07-09 06:28:08
同轴线变换器怎么分析?
介绍了一种分析同轴线变换器的新方法,建立了理想与通用模型,降低了分析难度和简化了分析过程。通过研究分析,提出了一种同轴变换器与集总元件相结合的匹配电路设计方法,通过优化同轴线和集总元件的参数,实现
2019-08-19 07:42:07
基于DC-DC变换器的推挽逆变车载开关电源电路设计方案
摘要:本文提出了一种推挽逆变车载开关电源电路设计方案。该方案在推挽逆变-高频变压器-全桥整流设计的基础上,利用24VDC输入-220VDC 输出、额定输出功率600W的DC-DC变换器,并采用
2018-09-29 16:55:57
基于SG3525和DC/DC变换器的大电流低电压开关电源设计
与B之间的电压uAB波形、霍尔电流传感器输出的反馈信号uf波形。图5(a)表明电源的全桥变换器实际工作情况与理论相符,uAB波形正负半周对称,由于变压器存在漏感,因此uAB波形正负半周均存在一个复位
2018-10-19 16:38:40
基于开关磁阻电机系统的功率变换器设计
摘 要:开关磁阻电机驱动系统(SRD)是一种新型无级调速系统。文章以开关磁阻电机的功率变换器为主要研究对象,重点分析了经典的半桥型功率变换电路及一种新型的软开关功率变换电路,并对其进行了
2018-09-27 15:32:13
大牛总结的反激变换器设计笔记
用的一种拓扑结构(Topology)。简单、可靠、低成本、易于实现是反激变换器突出的优点。这篇文章覆盖大部分现在反激变换器设计经验点,有需要的伙伴可以下载附件查阅参考学习,同时也给各位一个福利,那就是张飞
2021-09-16 10:22:50
如何利用MC34152和CMOS逻辑器件设计一种可满足以上要求的软开关变换器驱动电?
本文以升压ZVT-PWM变换器为例,用集成芯片MC34152和CMOS逻辑器件设计了一种可满足以上要求的软开关变换器驱动电路。
2021-04-22 06:45:34
如何对移相全桥谐振ZVS变换器进行测试?
ZVS-PWM谐振电路拓扑的电路原理和各工作模态分析200W移相全桥谐振ZVS变换器关键参数设计如何对200W移相全桥谐振ZVS变换器进行测试?
2021-04-22 06:25:56
如何用MC34152实现软开关变换器高速驱动电路的设计?
本文以升压ZVT-PWM变换器为例,用集成芯片MC34152和CMOS逻辑器件设计了一种可满足以上要求的软开关变换器驱动电路。
2021-04-22 06:09:47
开关变换器的实用仿真与测试技术
,开关变换器控制系统,仿真软件简介,开关变换器仿真模型及其应用,开关调节系统的测试技术。《开关变换器的实用仿真与测试技术》内容丰富、新颖、系统、实用,反映了20世纪90年代以来国内外学术界、工程技术界
2016-06-11 16:50:47
求一种基于升压ZVT-PWM的软开关变换器驱动电路设计
本文以升压ZVT-PWM变换器为例,用集成芯片MC34152和CMOS逻辑器件设计了一种可满足以上要求的软开关变换器驱动电路。
2021-04-21 06:03:59
用于半桥谐振变换器的FSFR1600功率开关的典型应用
用于半桥谐振变换器的FSFR1600功率开关(FPS)的典型应用。 FSFR系列包括专为高效半桥谐振转换器设计的高度集成的功率开关
2020-06-15 15:14:47
用于半桥谐振变换器的FSFR1700电源开关的典型应用
用于半桥谐振变换器的FSFR1700电源开关(FPS)的典型应用。 FSFR系列包括专为高效半桥谐振转换器设计的高度集成的功率开关
2020-06-15 16:18:50
电池驱动系统的DC-DC变换器选择
何时刻,两个开关管必须保证有一个开关管是导通的,即开关管的导通占空比不能小于0.5,导致两个输入电感总是有一个处于充电状态,输入电流总是大于零,这意味着系统有一个最低输出功率的限制。 一种电池全桥DC-DC变换器,电压充电配电电路。原作者:作家的魂 电池BMS工程师赶路人
2023-03-03 11:32:05
移相全桥控制的问题
图为阮新波的《全桥变换器的软开关技术》,其中“3.5 整流二极管的换流情况”,在ip不能满足副边电流后,副边的Lf强行续流,导致Dr2导通,进而导致变压器被短路。但是我有两个问题1. 此时变压器已经
2018-12-18 10:37:46
论文分享《LLC详谈细谈-新型LLC自驱动半桥谐振变换器研究》
=oxh_wx3、【周启全老师】开关电源全集http://t.elecfans.com/topic/130.html?elecfans_trackid=oxh_wx 论文分享《LLC详谈细谈-新型LLC自驱动半桥谐振变换器研究》资料来自网络
2019-07-02 21:43:00
资料分享:LLC 谐振变换器的研究
摘要:高频化、高功率密度和高效率,是 DC/DC 变换器的发展趋势。传统的硬开关变换器限制了开关频率和功率密度的提高。移相全桥 PWM ZVS DC/DC 变换器可以实现主开关管的 ZVS,但滞后
2019-09-28 20:36:43
一族新颖的桥式混合DC/DC变换器
一族新颖的桥式混合DC/DC变换器:介绍了一族桥式混合DC/DC变换器的拓扑结构,并以其中一种为例分析工作原理,验证了该族变换器具有高效率尧高功率密度尧低电磁干扰,在全负载范围内
2009-06-20 08:46:2696
一种新颖的副边控制型DC/DC半桥变换
提出一种新颖的副边控制型DC/DC半桥变换器。该变换器从空载到满载均能实现软开关,其中原边开关管实现ZVS,副边开关管实现ZCS。变换器优越的输出波形减小了输出滤波器的体积。
2009-10-14 10:08:0720
采用变压器次级辅助绕组的软开关PWM三电平变换器
采用变压器次级辅助绕组的软开关PWM三电平变换器
摘要:提出一种新型的ZVZCSPWM三电平直流变换器,在变压器的次级侧附加
2009-07-07 10:38:12694
有限双极性控制ZVZCSPWM全桥变换器
有限双极性控制ZVZCSPWM全桥变换器
摘要:研究了一种有限双极性控制ZVZCSPWM全桥变换器,分析了电路原理,给出了一个应用实例
2009-07-14 17:51:561881
新颖的软开关双向DCDC变换器
提出了一种新颖的双向 DCDC变换器 ,降压时采用移相控制ZVZCSPWM全桥功率变换,控制简单,效率较高,升压时采用带变压器隔离的Boost变换器,利用Boost变换器与推挽变换器的级联,通过
2011-08-11 16:44:51127
评论
查看更多