电流驱动同步整流反激变换器的研究 摘要:分析了工作在恒频DCM方式下的反激同步整流变换器。为了提高电路的效率,采用了一种能量反馈的电流型驱动电路来控制同步整流管。分析了该驱动电路的工作原理,并给出了设计公式。实验结果表明该方法提高了反激变换器效率的有效性。 关键词:反激;同步整流;能量反馈;电流驱动ResearchonaFlybackConverterUsing 1引言 随着数字处理电路(data?processingcircuits)的工作电压的持续下降,保持电路的高效率受到了很大的技术挑战。这是由于在低压电源中,二极管的正向压降引起的损耗占了电路总损耗的50%以上。由于MOSFET同步整流管SR(synchronousrectifiers)的低导通电阻,在大量的电路中都用来代替效率低的肖特基二极管,特别是在低压电源中[1]。 反激是一种广泛应用于小功率的拓扑,由于只有一个磁性元件,而具有体积小,成本低的优点。但是,目前同步整流在正激电路中的应用比较多,而在反激电路中的应用却很少。这是由于正激电路比较适合大电流输出,能够更好地体现同步整流的优势;另外一个原因是可采用简单的自驱动,而反激电路原边开关和副边开关理论上会有共通。但是,如果考虑到实际电路中变压器的漏感,则这种情况是不会产生的,所以当输出电流不是很大时,采用反激电路还是值得考虑的。本文将对工作在DCM方式下的同步反激电路进行分析。 同步整流中最重要的一个问题是同步管的驱动设计。同步管的驱动大体上可以分为自驱动(self?driv en)和他驱动(control?driven),本文介绍了一种能量反馈的自驱动电路。 2同步整流在反激电路中的应用 带有同步整流的反激电路如图1所示。一般来说,电路可以工作在CCM或DCM方式,开关频率可以是恒频(CF),也可以是变频(VF)。下面主要对工作在恒频DCM方式的工作过程进行分析。主要波形如图2所示。在DCM方式下工作时,原边开关开通时储存在变压器励磁电感上的能量在开关关断时全部传送到副边。从图2可以看出,在原边开关开通之前,副边电流已经为零了。由于MOSFET具有双向导电特性,所以为了防止副边电流逆流,必须在其到达零点时(即t3)或很短的一小段时间里关断SR。因此,DCM方式下工作的反激电路必须要有一个零电流检测环节来控制电路。 在t3时刻SR关断以后,励磁电感Lm和电容Ceq=Csw+进行谐振,谐振阻抗为: Zm=(1) 直到t5时刻原边开关开通为止。同时,由于VDS的存在,原边开关开通时的开通损耗为:
图1带同步整流的反激电路
图2DCM方式下的反激主要波形
图3传统的电流型驱动电路 Pturnon(SW)=CSWVon2fs(2) 其中:Vin-nVo?Von?Vin+nV; Vo为输出电压; fs为开关频率。 也就是说,当原边开关在谐振电压的峰值开通时,电路的效率最低,相反,在谷值开通时,电路的效率最高。因为谐振的时间tDCM=t5-t4会随着输入电压的变化而变化,即Von会随着输入电压的变化而变化,从而电路的效率会随着输入电压的变化而发生扰动。另一方面,由于SR的输出电容CSW比一般的肖特基二极管要大,由式(1)可知,采用同步整流的电路的谐振电流要比采用肖特基二极管的电路大,这个电流流过SR,从而产生比较大的损耗。所以,如果电路的器件或者参数设计不当,用SR来代替二极管不一定能提高效率。 这个电路的另一种工作方式VFDCM就是基于这种思想产生的。t3时刻SR关断后,在VDS第一次到达谷底时(见图2的t4时刻)开通原边开关,就可以达到减小开关损耗的目的,可以从整体上提高电路效率。 3同步整流管的驱动 SR的驱动是同步整流电路的一个重要问题。有的电路可以采用自驱动,典型的电路比如采用有源箝位的正激电路,这种驱动由于是利用变压器副边的电压来驱动SR,不必另加电路,即节约了成本,又提高了电路的效率。而有的时候为了能够更灵活地控制SR,则可以采用他驱动。 如前所述,只要采用零电流检测技术,反激电路也是可以采用自驱动。传统的电流驱动电路如图3所示。这种驱动电路是消耗能量的,为了减小这种损耗,电流检测线圈的压降必须尽可能低。实际电路中一般要达到整流管压降的1/10。比如说,在图3中,如果VSR=0.1V,则VCS要在0.01V左右。而SR的驱动电压至少要5V,这样会导致N2和N1的匝数比非常大。这不仅使得电流检测装置非常笨重,而且会增大漏感,影响到同步管的迅速开通。这也是这种电路不适合在高频下工作的原因。 为了解决电流检测电路所引起的损耗问题,提出了具有能量反馈(energyrecovery)的电流检测电路[2],如图4所示。
这个电路增加了一个能量反馈部分,通过N3和N4的作用,把电流检测的能量反馈到一个直流源里,这个直流源可以是电路中的任一直流电压,一般用输出电压来代替。有了这个电路后,VCS可以设计得比VSR还高,而不会引入额外的损耗。这样就解决了传统电流驱动电路匝数比大的缺点。 电路的基本工作过程如下,当电流从SR的源极流向漏极时,线圈N1上也流过同方向的电流,折算到线圈N2上的电流给SR的门极电容充电,当门极电压VGS折算到N3等于Vo时,二级管D1导通并且把能量从N1传递到直流源Vo。适当设计N2和N3的匝数比,N2上的电压可以用来驱动SR,只要SR上的电流持续流过N1,直流源Vo保持不变,SR的驱动电压就不会随着输入电压的变化而变化。当流经SR的电流降到零并且要反向流时,二级管D1关断,D2开通进行磁复位。SR的门极电压为负,从而关断。因此没有反向电流流过SR。在这种电流驱动电路中,SR的特性就像一个理想的二极管一样。
(a)Vin=40V时VDS(SW)与ipri波形 (b)Vin=40V时VSR与isec波形
(c)Vin=60V时VDS(SW)与ipri波形 (d)Vin=60V时VSR与isec波形 图5实验波形
如上所述,流过N1上的电流除了折算到N2给门极电容充电外,还要有额外的电流来导通D1,这样才可以把N2的电压箝住。从另一个角度来说,也就是流过N2的励磁电流不能太大,这可以通过适当设计励磁电感来实现[2]: Lm?(3) 式中:D为SR的占空比; Ts为开关周期; ISR-P为流过SR的电流峰值; Vo为输出电压。 文献[2]对这个电路的稳态过程,瞬态过程进行了详细的分析,考虑到电路的具体参数以及电路的损耗,电流驱动电路的匝数比可以由式(4)~式(6)决定: Vg(on)=Vo(4) D≤(5)=(6) 式中:Vg(on)为SR的栅极驱动电压; N1~N4为对应线圈的匝数; VF?D1为二极管D1的正向导通压降; Vth为SR的栅极门槛电压; VF?BD为SR的体二极管正向导通压降。 4实验结果 设计了一个开关频率为100kHz的反激电路,其输入电压为40~60V,输出电压5V,输出电流2.5A。同步整流管采用STP40NF03L,电压30V,电流40A,导通电阻<0.022Ω,栅极电容约为750pF。电流驱动变压器的匝数比为2:58:29:25(N1~N4)。图5为实验波形。图5(a)是输入电压为40V时原边开关的漏源极电压和流过开关的电流波形。图5(b)是输入电压为40V时SR的驱动电压和流过SR的电流波形。图5(c)和图5(d)是输入电压为60V时相应的波形。 5结语 同步整流在反激电路中的应用虽然不多,但是当输出电流不大时,反激电路还是一个不错的选择。同时,采用能量反馈驱动电路来控制反激同步整流管,提高了电路的效率。这种驱动电路还具有适合于各种拓扑等优点。 |
电流驱动同步整流反激变换器的研究
- 变换器(108177)
- 反激(16059)
相关推荐
同步整流反激变换器应用电路详解 —电路图天天读(119)
反激变换器应用广泛,采用同步整流技术能够很好的提高反激变换器效率,同时为使同步整流管的驱动电路简单,采用分立元件构成驱动电路。
2015-03-12 11:21:5814487
详解同步整流技术在正激变换器中的应用
近年来随着电源技术的发展,同步整流技术正在低压、大电流输出的dc/dc变换器中迅速推广应用。##外驱同步整流。##本文采用外驱同步整流的方法,制作了一台高压输入低压输出的电源模块原理样机,另外本文
2014-08-08 14:07:3910839
反激变换器
大家好,我现在要设计一个电源,输入范围18-72,输出24,300w功率,实现输入输出全隔离。要实现升降压,所以想选择反激变换器,现在有几个问题1、反激变换器书上介绍只有在CCM模式下为升降压模式
2016-12-04 18:31:07
反激变换器交叉调整率改善措施
反激变换器在多路输出电源应用场合成本优势明显,因而广泛应用于家电、机顶盒、仪器仪表等电子产品的内置电源。由于变压器漏感等参数引起的交叉调整率问题已成为多路输出电源的设计难点之一,本期芯朋微技术团队
2017-08-07 10:32:18
反激变换器原理
导通时变压器储存能量,负载电流由输出滤波电容提供;开关管关断时,变压器将储存的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量。下面祥细讨论此类拓朴的优缺点。反激变换器的主要优点
2009-11-14 11:36:44
反激变换器有什么优点?
反激变换电路由于具有拓扑简单,输入输出电气隔离,升/降压范围广,多路输出负载自动均衡等优点,而广泛用于多路输出机内电源中。在反激变换器中,变压器起着电感和变压器的双重作用,由于变压器磁芯处于直流偏磁状态,为防磁饱和要加入气隙,漏感较大。
2019-10-08 14:26:45
反激变换器的计算
《开关电源设计(第三版)》反激变换器断续模式的计算,先是根据伏秒数守恒和20%死区时间计算出Ton,然后根据能量守恒在考虑效率的情况下计算出电感L,换句话说电感跟效率有关,但如果计算出Ton后先算
2018-09-17 20:36:00
反激变换器的设计步骤
一般取0.2 即可。一般在整流后的最小电压Vinmin_DC 处设计反激变换器,可由Cbulk 计算Vinmin_DC:3. Step3:确定最大占空比Dmax反激变换器有两种运行模式:电感电流
2020-11-27 15:17:32
反激变换器的辅助绕组电压会随着空载和带载而变化
我的反激变换器,在输出带负载的情况下,辅助绕组VCC的电压为12V,可是当空载的时候,辅助绕组VCC的电压只有10V了,请问这是什么原因呢?
2014-05-26 14:01:23
反激变换器的闭环控制
=oxh_wx3、【周启全老师】开关电源全集http://t.elecfans.com/topic/130.html?elecfans_trackid=oxh_wx复习电力电子技术的时候想起来老师说过boost和反激变换器只能采用双环控制,不能用单环,原因上课讲过但是没认真听,所以来请教一下各位,谢谢大家了
2019-06-26 23:42:07
反激变换器设计中常见的问题与解决措施
本帖最后由 wulei00916 于 2014-6-20 22:52 编辑
本PDF文件,详细介绍了设计反激变换器时,经常会遇到的几种疑难问题,并给出了解决措施
2014-06-20 22:52:27
反激变换器设计注意事项
,迫使绕组的电压极性反转。电流现在从二次绕组流出,以正点电压逆转绕组电压的极性。D1传导,将电流传送到输出负载,并为输出电容器充电。图160W CCM反激变换器原理图点击放大额外的变压器绕组可以添加
2020-01-09 11:25:10
反激变换器设计,系统输入电压问题
我看到一个反激变换器设计中,系统输入规格如下所示:市电输入电压(单位V):V_min=85V_nom=220V_max=265我国的市电电压220v,电压波动如果按正负20%考虑,那么V_min
2023-02-07 14:52:55
PFC+反激变换器中变压器的设计问题
前级PFC输出电压400V,后面用反激变换器来实现12V/400mA的输出,反激变压器如何进行设计呢?看了好多帖子,理解的都不是很清楚。希望有高手可以分享一个案例
2018-05-17 20:16:10
【转】准谐振软开关双管反激变换器
一种准谐振软开关双管反激变换器。该变换器具有双管反激变换器的优点,所有开关管电压应力钳位在输入电压,因此,可选取低电压等级、低导通电阻MOSFET以提高变换器的效率、降低成本。利用谐振电感与隔直电容
2018-08-25 21:09:01
一步步为你解析反激变换器设计
一般取0.2 即可。一般在整流后的最小电压Vinmin_DC 处设计反激变换器,可由Cbulk 计算Vinmin_DC:3. Step3:确定最大占空比Dmax反激变换器有两种运行模式:电感电流
2021-07-02 06:00:00
为什么在反激变换器中使用BJT?
控制器的基本驱动带来了更大的压力。当为这个设计选择一个反激控制器时,要确保它是为了控制和驱动适配器应用程序中的BJT而设计的。UCC 28722反激控制器是针对主开关采用BJT控制准谐振/不连续反激变换器
2020-01-09 11:29:00
伊凡微 AP402B紧凑的二次侧同步整流器控制器和高性能反激变换器驱动器
伊凡微 AP402BAP402B是一个紧凑的二次侧同步整流器控制器和高性能反激变换器驱动器。不需要辅助绕组的快速关断整流器,兼容CCM, DCM, QR 模式。SOT23-6L 封装。 广泛用于电源适配器, TYPE-C PD 充电器。详见附件规格书。
2019-11-15 14:27:32
传统的硬开关反激变换器应用设计
快充及电源适配器通常采用传统的反激变换器结构,随着快充及PD适配器的体积进一步减小、功率密度进一步提高以及对于高效率的要求,传统的硬开关反激变换器技术受到很多限制。采用软开关技术工作在更高的频率
2018-06-12 09:44:41
双管正激变换器有什么优点?
由于正激变换器的输出功率不像反激变换器那样受变压器储能的限制,因此输出功率较反激变换器大,但是正激变换器的开关电压应力高,为两倍输入电压,有时甚至超过两倍输入电压,过高的开关电压应力成为限制正激变换器容量继续增加的一个关键因素。
2019-09-17 09:02:28
图文实例讲解:反激变换器的设计步骤
/3;由公式 41 可知,如果不加斜坡补偿(ma=0),当占空比超过 50%时,电流环震荡,表现为驱动大小波,即次谐波震荡。因此,设计 CCM 模式反激变换器时,需加斜坡补偿。对 DCM 模式反激
2020-07-11 08:00:00
大牛总结的反激变换器设计笔记
开关电源的设计是一份非常耗时费力的苦差事,需要不断地修正多个设计变量,直到性能达到设计目标为止。本文step-by-step 介绍反激变换器的设计步骤,并以一个6.5W 隔离双路输出的反激变换器
2021-09-16 10:22:50
讨论:DCM反激变换器输出滤波电容发热的原因
排除周围发热器件的影响,我现在想到的DCM反激变换器输出滤波电容自发热的原因有:1。输出整流二极管整流后的电压半波幅值过高;2。电容的纹波电流RMS值大,同时电容的ESR也大,造成ESR的损耗过大
2019-06-22 18:13:27
设计反激变换器 PCB 设计指导
PCB 设计时应当注意的事项,并采用软件仿真的方式验证了设计的合理性。同时,在附录部分,分别给出了峰值电流模式反激在CCM 模式和DCM 模式工作条件下的功率级传递函数。设计反激变换器
2020-07-23 07:16:09
设计反激变换器 仿真验证
型控制器UC3843(与NCP1015 控制原理类似),搭建反激变换器。其中,变压器和环路补偿参数均采用上文的范例给出的计算参数。仿真测试条件:低压输入(90VAC,双路满载)1.原理图图17 仿真原理图
2020-07-22 07:39:08
设计反激变换器步骤 Step6:确定各路输出的匝数
滤波器的转折频率要大于1/3 开关频率,考虑到开关电源在实际应用中可能会带容性负载,L 不宜过大,建议不超过4.7μH。10. Step10:钳位吸收电路设计如图 8 所示,反激变换器在MOS 关断的瞬间
2020-07-21 07:38:38
设计反激变换器步骤Step1:初始化系统参数
取0.2 即可。一般在整流后的最小电压Vinmin_DC 处设计反激变换器,可由Cbulk 计算Vinmin_DC:3. Step3:确定最大占空比Dmax反激变换器有两种运行模式:电感电流连续模式
2020-07-20 08:08:34
设计反激变换器:补偿电路设计
。前文提到,对于峰值电流模式的反激变换器,使用Dean Venable Type II 补偿电路即可,典型的接线方式如下图所示:通常,为降低输出纹波噪声,输出端会加一个小型的LC 滤波器,如图 10 所示
2020-07-20 08:21:48
资料分享:LLC 谐振变换器的研究
的电流电压分析3.8.1 副边整流二极管3.8.2 变压器原边励磁电感3.8.3 谐振槽路3.9 本章小结第四章 LLC 谐振变换器的小信号分析 4.1 开关电源小信号建模的方法概述 4.2 扩展描述
2019-09-28 20:36:43
输出反灌电流零电压软开关反激变换器
零电压开通,电路的结构如图1所示,和传统的采用同步整流的反激变换器完全相同,只是控制的方式不一样,工作的原理分析如下。图1:输出反灌电流零电压软开关反激变换器图2:输出反灌电流零电压软开关反激变换器
2021-05-21 06:00:00
连续电流模式反激变压器的设计
反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载
2023-09-28 07:07:09
零基础如何入门学习电源?带你从反激变压器开始了解
公式 41 可知,如果不加斜坡补偿(ma=0),当占空比超过 50%时,电流环震荡,表现为驱动大小波,即次谐波震荡。因此,设计 CCM 模式反激变换器时,需加斜坡补偿。对 DCM 模式反激,控制到输出
2020-07-11 07:00:00
高效率反激变换器设计技巧分享
漏感问题是反激变换器的基本问题。漏感是硬伤。要实现高效率,控制漏感是重头戏。先做好漏感,再说其余。漏感有多大?意味着能量传递损失多大,变换器效率损失有多大,钳位电路热损耗有多大。这都是额外的,其他变换器没有的。
2023-09-19 07:44:19
高频共模电流、电压和阻抗的测量 —— 以反激变换器为例
为例,来谈论怎样得到准确的测量结果。02反激变换器高频共模电流的测量下图左图为反激变换器的拓扑及共模电流路径。在共模路径上,原边主要有共模滤波器,整流桥,电解电容等;共模电流通过变压器流到副边,并流到
2021-12-21 07:00:00
一种新型反激变换器的研究
本文基于NCP1205 芯片设计了一种新型准谐振反激变换器。在分析该变换器工作原理的基础上,进行了电路设计和工作频率计算。由实验结果,新型反激变换器具有良好的负载调整
2009-05-30 14:42:5019
不对称半桥同步整流DC DC变换器
简要介绍了不对称半桥同步整流变换器的5--作原理,对同步整流管的驱动方式进行了比较和选择,并在分析变换器的整流损耗的基础上,总结出了影响整流损耗和变换器效率的各
2009-10-16 10:23:4126
一种反激同步整流DC-DC变换器设计
对反激同步整流在低压小电流DC-DC变换器中的应用进行了研究,介绍了主电路工作原理,几种驱动方式及其优缺点,选择出适合于自驱动同步整流的反激电路拓扑,并通过样机试验
2009-10-19 09:17:3258
正激变换器简明设计
正激变换器简明设计1、优点和缺点1、优点:结构简单,驱动电路简单,输出纹波电流小适用于低电压大电流输出,易于多路输出,可靠性高。2、缺点:变压器单向励磁
2010-03-20 16:13:2941
一种有源钳位同步整流DC-DC变换器的研究
摘要:介绍了同步整流的工作原理,根据自驱动同步整流电路的要求,选择出适合与之结合使用的高效拓扑—有源钳位正激变换器,分析了其工作原理并对其作了详细的损耗分析,通过样机
2010-06-03 09:10:3135
一种反激同步整流DC-DC变换器设计
对反激同步整流在低压小电流DC-DC变换器中的应用进行了研究,介绍了主电路工作原理,几种驱动方式及其优缺点,选择出适合于自驱动同步整流的反激电路拓扑,并通过样机试
2006-03-11 13:00:262135
不对称半桥同步整流DC/DC变换器
不对称半桥同步整流DC/DC变换器
0 引言
目前,对低压大电流输出变换器的研究已经成为重要的课题之一,如何提高这类变换器的效率
2009-07-04 11:34:361264
反激变换器副边同步整流控制器STSR3应用电路详解(2)
反激变换器副边同步整流控制器STSR3应用电路详解(2)
摘要:为大幅度提高小功率反激开关电源的整机效率,可选用副边同步整流技术取代原肖特基二极管整流器。
2009-07-06 09:09:121538
谐振复位双开关正激变换器的研究
谐振复位双开关正激变换器的研究
摘要:推荐了一种谐振复位双开关正激型DC/DC变换器。它不仅克服了谐振复位单开关正激变换器开
2009-07-11 09:29:471304
反激变换器副边同步整流控制器STSR3应用电路详解(1)
反激变换器副边同步整流控制器STSR3应用电路详解(1)
摘要:为大幅度提高小功率反激开关电源的整机效率,可选用副边同步整流技
2009-07-11 09:52:071440
倍流同步整流在DC/DC变换器中工作原理分析
倍流同步整流在DC/DC变换器中工作原理分析
在低压大电流变换器中倍流同步整流拓扑结构已经被广泛采用。就其工作原理进行了详细的分析说明,并给出了相应的实验
2009-10-29 17:36:062568
基于NCP1200A的多路反激变换器的研究
基于NCP1200A的多路反激变换器的研究
介绍了低功率通用离线式电源的脉宽调制电流型控制器NCP1200A的原理,并且通过所研制出的多路隔离反激变换器
2009-10-29 17:45:231809
同步整流实现反激变换器设计
详细分析了同步整流反激变换器的工作原理和该驱动电路的工作原理,并在此基础上设计了100V~375VDC 输入,12V/4A 输出的同步整流反激变换器,工作于电流断续模式,控制芯片选用UC3842,
2011-08-30 14:35:366067
正激变换器同步整流驱动方法分析
本文对正激变换器同步整流的内驱动、外驱动方法的工作原理进行了比较分析。讨论了提高同步整流效率应采取的措施。 并得出结论,同步整流是低压、大电流电源中提高效率的有效方法。
2016-05-11 15:26:219
基于输出反灌电流的ZVS软开关反激变换器的原理和应用
开通,电路的结构如图1所示,和传统的采用同步整流的反激变换器完全相同,只是控制的方式不一样,工作的原理分析如下。
2022-03-25 09:43:0013941
LT3752LT8311演示电路-带同步整流的有源箝位正激变换器(36-72V至12V@12A)
LT3752LT8311演示电路-带同步整流的有源箝位正激变换器(36-72V至12V@12A)
2021-06-02 14:30:183
LTC3765LTC3766演示电路-120W隔离正激变换器,带同步整流(9-36V至12V@10A)
LTC3765LTC3766演示电路-120W隔离正激变换器,带同步整流(9-36V至12V@10A)
2021-06-05 16:03:198
不对称半桥同步整流DC/DC变换器.pdf
不对称半桥同步整流DC/DC变换器.pdf(移动电源显示fu)-:简要介绍了不对称半桥同步整流变换器的5--作原理,对同步整流管的驱动方式进行了比较和选择,并在分析变换器的整流损耗的基础上,总结出了影响整流损耗和变换器效率的各种参数。
2021-07-26 14:40:0028
反激同步整流DC TO DC变换器的设计.pdf
反激同步整流DC TO DC变换器的设计.pdf(12v 20a电源)-摘 要: 对反激同步整流在低压小电流DC-DC变换器中的应用进行了研究,介绍了主电路工作原理,几种驱动方式及其优缺点,选择出适合于自驱动同步整流的反激电路拓扑,并通过样机试验,验证了该电路的实用性。
2021-07-26 14:43:3734
一种同步整流升压型DC-DC变换器的设计与研究
一种同步整流升压型DC-DC变换器的设计与研究(安徽理士电源技术有限公司招聘)-首先对变换器的功率级部分元件的选取进行了分析,考虑到损耗的部分,决定应用同步整流模式来提高效率。同步整流方法是由功率
2021-09-17 11:54:342
反激变换器PSIM仿真案例
特殊,它兼起储能电感的作用,称为储能变压器(或电感-变压器)。为防止负载电流较大时磁心饱和,反激变换器的变压器磁心要加气隙,降低了磁心的导磁率,这种变压器的设计相对复杂些。
2022-12-23 16:18:115277
反激变换器的整流二极管上面为什么要并联电容和电阻?
反激变换器的整流二极管上面为什么要并联电容和电阻? 反激变换器(Flyback Converter),又称反激式开关电源,是一种常见的开关电源拓扑结构,其主要特点是采用一个能量存储元件(如变压器
2023-09-12 18:19:082242
评论
查看更多