摘要:电荷泵式电子镇流器,采用充电电容和高频交流源,以实现功率因数校正(PFC),这已成为荧光灯镇流器中极有吸引力的电路拓扑。但这种电路还存在一些问题,如输入电流的THD值高,灯电流的波峰比(CF)高。对这些问题产生的根源进行了分析,并提出解决方法。附加两只小型箝位二极管后,在开环控制状态,就可使输入电流波形得到很好的改善,从而使PF>0.99,THD<5%,而灯电流的CF<1.6。并给出了实验结果。 关键词:电子镇流器;功率因数校正;电路 Analysis and Improvement for Charge Pump Electronic Ballast GAO Ji-sun Abstract:The charge pump electronic ballast circuit which employs a charging capacitor and a high frequency AC source to implement the power factor correction(PFC)has become an attractive topology for the ballast of the fluorescent lamp. But, this circuit has some problems, such as higher total harmonic distortion(THD)of the input current and higher crest factor(CF)of the lamp current. The origin of the problems is analyzed and asolution is proposed. With the addition of two small clamping diodes, very good input current(PF>0.99,THD<5%)and lamp current(CF<1.6)can be obtained with the open loop control. The experimental results are provided for verification. Keywords:Electronic ballast;Power factor correction;Circuit 1 引言 普通电子镇流器拓扑,由带无源LC滤波器的桥式整流电路和高频逆变器组成,它已不能满足电网的严格要求,如线路输入端的功率因数要高,电网电流的THD要低等。断续升压式PWM变换器及其拓扑,可采用简单的控制电路,达到较高的功率因数,不过,它需要附加一只笨重的升压电感器,此外,开关功率管上的电压/电流应力一般也比较大。综合考虑,该电子镇流器的性能/价格比就不会太高。近年来,采用充电电容和高频交流源来进行功率因数校正(PFC)的电子镇流器成为极具吸引力的电路拓扑。因为,充电电容器按类似“电荷泵”的方式来调整输入电流的波形,这类电路,也叫做“电荷泵”功率调节器。因为在电路中,取消了升压电感器,输入端的LC滤波器的体积就大大减小了,镇流器的成本还可能降低。但是,其输入电流的THD>15%,灯电流的CF>2.4。本文在对该“电荷泵”电路的工作原理和存在问题进行分析后,采用二极管箝位技术克服了这些存在的问题,使在开环控制下,就能得到良好的输入电流和灯电流波形。为了验证理论分析结论,还提供了实验结果。 2 工作原理和存在问题 图1为典型的“电荷泵”式电子镇流器电路图,图中Lr与Cr是谐振元件,Cb1是隔直电容。该电路和普通镇流器电路的区别是:普通镇流器是在整流桥后紧接高频逆变器,而本电路是增加了一只电容Cin和二极管Dc,这两个元件在调整输入电流波形方面起到了关键作用。图1电路可分为两部分:PFC及DC/AC逆变。图2为其PFC部分的等效电路和理想波形。为了简化分析,把Cr两端的电压看作独立的高频电压源(Ua)。通过设计,使直流母线电压Udc高于输入的电网电压Ug,二极管Dc不会导通。从而,输入电流就等于Cin的的正向充电电流,电流的方向如图2(a)所示 。 这 是 通 过 调 节ug和udc来 实 现 的 。 如 果Cin上 电 荷 的 变 化 〔 它 正 比 于Cin两 端 电 压 的 变 化 , 即ucmax-ucmin。 参 看 图 2( b) 〕 紧 跟 着 输 入 电 压ug变 化 , 则 可 使 功 率 因 数 达 到 1。 具 体 分 析 如 下 :
图1 典型电荷泵电子镇流器电路
(a) 等效电路 (b) 理想的波形 2.1 PFC原理分析 在一个开关周期内电荷泵电路的稳态工作,可分为四个拓扑阶段,如图3所示。理论波形如图4所示。
1)阶段1[0~α] 在这个阶段,因为节点B处的电压ub低于Udc,而高于ug,ug 在ω t=α,DB开始导通,ub被箝位到ug,使ub为恒定值。当ua继续下降时,uc必然增加。这样Cin被整流的电网电流充电。在ω t=π时,ua降至uamin,而uc则达到其最大值。
ucmax=ug-uamin (1)
3)阶段3[π~(π+β)]
在ω t=π之后,ua从uamin开始增加,ub变得大于ug,迫使DB关断,因为ub低于udc,二极管Dc仍被阻断。同阶段1类似,电容Cin中无电流通过,uc维持不变。ua继续增加,ub继续提升,在ω t=π+β时,此阶段结束。
4)阶段4[(π+β)~2π]
在ω t=π+β时,ub变得等于udc,二极管Dc开始导通,因为ub被箝位到udc,当ua继续增加时,uc必然下降。Cin的放电电流流入udc,在ω t=2π时,ua增加到uamax,而uc达到其最小值。
ucmin=ug-uamax (2)
在ω t=2π时,该电路工作又进入阶段1,重复下一个开关周期。
从上面分析可以看出,在该电路中的输入电流是断续的,它只在阶段2内有电流流过。在此阶段内,Cin上的电荷变化是:
ΔQch=Cin(ucmax-ucmin) (3)
把式(1)和式(2)代入式(3),并考虑到在阶段2时
udc=ug可得到
ΔQch=Cin(ug+2Up-udc) (4)
式中:2Up=uamax-uamin——ua的交流峰-峰值。
因为,在整个开关周期内,整流二极管只在阶段2内导通,则一个周期内的平均输入电流就等于Cin的平均充电电流,即:
iin,av=fsΔQch=fsCin(ug+2Up-udc) (5)
要使功率因数值大,就期望输入电流紧紧跟随输入电压,即:
iin,av∝ug (6)
如果在设计时,使
udc=2Up=ua,max-ua,min (7)
就会有:
iin,av=fsCinug∝ug (8)
这就意味着,如果满足式(7),该电路就会有良好的功率因数。这里,假定ua是正弦波形。事实上,ua可能是幅值恒定的其它任何波形。ua的直流偏置,也不是决定输入电流波形的因素。只要ua的峰-峰值(2Up)等于udc,就能保证获得良好的功率因数。
从式(5)还可看出,2Up不应小于udc,这可避免电网电压过零时,电网电流发生波形畸变。如果2Up 在实际电路中,输入电流可能畸变。这是由于Cin对逆变器电路的影响。该逆变器的工作可分为三个等效的拓扑,如图5所示。图5中R1a'是灯的等效电阻。图5表明,电容Cin在阶段1及阶段3,并不影响电路工作,但在阶段2和阶段4,Cin被接入了谐振电路。在交流等效电路中,Cin同Cr并联起来了。因此,该等效的逆变器,可近似为图6的电路。等效谐振电容值等于Cineq+Cr(而Cb1仅仅是个隔直电容)。
图5 逆 变 器 工 作 的 三 个 子 拓 扑
转换后Cin的等效值可近似为一个可变电容Cineq,如图6所示。因为,在一个开关周期内,由Cineq泵入谐振电路中的电荷可由式(4)表示,Cineq两端上的电压变化等于2Up,则该等效的输入电容可以这样估算:
Cineq=ΔQch/ΔU=Cin(ug+2Up-udc)/2Up (9)
通常,在交流电网电压半周期内,2Up和udc的变化是很小的,可通过适当的设计,使udc≈2Up,总能保持住。所以式(9)可写成
Cineq≌Cin(ug/2Up)∝ug (10)
尽管式(10)从数学上讲不是严密的。但它使我们能较好地理解Cin对谐振电路的影响。一般地说,由于Cin的影响,总的谐振电容值(Cr+Cineq)是随着电网电压ug的下降而减小,如式(10)所示。这使得高频交流电压ua的幅值在电网电压半周期内成为可变的。从而,在此半周期内,式(7)就不能成立。于是,输入电流波形畸变了,THD也升高了。因为,灯的阻抗很接近一个具有负的动态值的电阻(负阻),则灯管电压上叠加的100Hz的纹波也会在灯电流波形上引发较强的100Hz纹波。结果,灯电流的波峰比CF值也变高了。
当电网电压变低时,总的谐振电容就变小了。在轻载状态,这可能引起该逆变器的谐振频率偏移到高于开关频率,谐振电路的电流iL将会超前回路电压ut。结果,导致功率开关管MOSFET不能在零电压下开 关 (ZVS) ( 详 见3中 的 论 述 ) 。 在 高 频 工 作 时 ,MOSFET中 的 二 极 管 的 反 向 恢 复 电 流 可 能 会 损 坏MOSFET器 件 ( 详 见3中 的 例 子 ) 。
虽然,选用大的Cr(Cr》Cin)可能会降低Cin引起的影响,但谐振电感器中的电流应力仍然很高。所以,从效率和Lr的体积尺寸两者来考虑,选用大的Cr并不可取。
3 改善输入电流及灯电流波形的办法
根据式(5),要获得正弦输入电流波形,有两个途径:一是调整MOSFET管的开关频率fs,二是获得一种关系式:2Up=udc。调整fs就需要复杂的控制电路,况且,也难保证得到低的灯电流波峰比CF。因此,设法使2Up=udc,是可选择的途径。
3.1 基本的解决思路
图1基本电路的波形示于图7。由于Cin的调制作用,ua的包络线上有明显的100Hz纹波。uc的变化,也不能跟随输入电压ug。为得到良好的输入功率因数,应该滤平ua的包络。在特殊情况下,2Up总是大于udc,可以采用二极管箝位技术,来滤平ua的包络。此电路示于图8,其波形如图9所示。ua的包络被箝在udc(在这种情况下,uamax=udc,uamin=0),式(7)总能成立。可获得正弦输入电流波形。
图 7 基 本 电 荷 泵 电 路 中 的ua及uc波 形 (2Up>udc)
(c) 模 态3:iL> 0,ua=udc
(d) 模 态4:iL>0,0 (e) 模 态5:iL< 0,0
3.2 工作原理
该逆变电路的稳态工作可分成六个工作模态,如图10所示。图中,ZA代表Cineg,Cr及R1a'+Cb1的等效组合。图11为该电路的仿真波形。在下面讨论中,正向电流和电压的方向按图10所示定义。
1)模态1
S2关断,电感电流反向流经D1,使S1可在ZVS状态导通。在这种模态下,ua小于udc,uLr1总是正的。从而,电感电流iL的幅值下降,当iL降到零时,这种模态结束。
2)模态2
S1导通,因为ua处于0和udc之间,Da1和Da2均截止。由于电感电压的极性关系,电感电流iL维持正向增长。当ua达到udc时,这个模态结束。
3)模态3(箝位模态或续流阶段)
Da1导通,ua被箝位到udc,uLr1为零。因此iL通过Da1和S1续流。当S1截止时,该模态结束。
4)模态4
S1截止,迫使正向的电感电流流经D2。从而使S2以ZVS导通。在这种工作模态中,ua总是正的,所以,电感电压uLr1总是负的,电感电流的幅值下降。当电感电流变成零时,该模态结束。
5)模态5
S2导通,Da1和Da2都不导通。因为ua是处在udc和零之间。加在Lr1上的电压是负的。因此,电感电流按反方向增加,如图11所示。在降到零时,该模态结束。
(uf为 开 关 电 压 , 虚 线 为 无 箝 位 二 极 管 , 实 线 为 有 箝 位 二 极 管 )
6)模态6(箝位模态或续流阶段)
Da2导通,ua被箝位到零。电感电流经过Da2及S2续流。在S2截止时,该模态结束,又接着模态1开始下一个循环。
图11表明了有箝位二极管和没有箝位二极管的波形图。没有箝位二极管时,谐振电路电流超前回路电压,不能保证ZVS状态。但是在有箝位二极管时,谐振电路电流就变得滞后回路电压了(由于被箝位二极管引发的续流阶段),MOSFET中的二极管在该开关管导通前总是导通着。自然就可得到ZVS状态。所以,在采用了二极管箝位技术后,ZVS的负载范围变宽了。通过适当的设计,使该箝位二极管只在很短时间内导通,这样箝位二极管的电流应力就会很小。
3.3 进一步的改进措施
从图11可看出,图8所示电路中的灯电压波形(ua-udc/2)不是正弦波,这是由于箝位工作模态所致,从而,灯电流中就存在高频谐波分量。这会引起EM1辐射问题。此外,在负载变轻时,该基本电路会受较高的电压应力。这可采用第二级谐振技术来解决。图12为最后所形成的电路。图中Lr2和Cr2构成第二级谐振电路。这可以在负载变轻时,把直流母线上的电压降低,并且还提供必要的电压变换增益去点亮灯管,同时又满足式(7)(这是高功率因数所需要的),由于Lr2及Cr2的低通滤波作用,灯电流波形就接近正弦波。其EM1辐射就小了。因为ua的包络线被箝到udc,灯电流中电网频率的纹波也会很小,灯电流的波峰比也下降了。
4 实验结果
为验证上面的理论分析,进行了实验。图13是在图12中没有箝位二极管时的波形。其功率因数为98%,而输入电流的THD是10.4%,灯电流的波峰比CF是2.4。
图14是有箝位二极管时的波形(电路参见图12)。图中元件参数如下:Lr1=400μH,Cr1=1.2nF,Cin=28nF,Lr2=800μH,Cr2=9.4nF;输入电网电压是交流220V,所以udc为310V,工作频率为50kHz。功率因数0.995,THD是4.5%,CF是1.58。
图12电路同图1所示的基本电路相比较,所用磁性元件数相同。图1所示电路中的变压器是必不可少的,这是为了获得适当的电压变比,去点亮灯管,同时要满足式(7)。但图1电路中的谐振电感器的体积尺寸很大,因为它必须在灯点亮瞬间,能维持较大的伏·秒积(在灯点亮瞬间,灯电流较大,有大的电流通过谐振电感,此时,电感不应进入磁饱和)。相反,谐振电感器的Lr1体积尺寸却小得多,因为,在点灯瞬间,Lr2和Cr2之间的第二次谐振,使得ua很小。实验结果表明,所用磁材总体积从基本电路中62cm3降到新电路中的42cm3。虽然在新电路中多用了2只二极管,但新电路中,整个半导体开关器件上的电压应力却大大低于基本电路的电压应力。因而,开关器件的价格也降低了。 5 结语
基本的“电荷泵”电子镇流器电路,输入电流的THD高,灯电流的CF高,此外,在轻负载时和低的电网电压时,不易保持ZVS状态。而通过采用简单的二极管箝位技术,使输入电流的波形和灯电流的波形大大改善了,THD和CF明显地降低了。而由于引入了续流阶段,使ZVS也容易维持。此外,由于磁性元件体积的减小,半导体开关管上电压应力的减小,使新电路的成本也降低了。 |
电荷泵式电子镇流器基本电路的分析
- 电子(88241)
- 镇流器(34116)
相关推荐
1.5至5.5 V的CMOS电荷泵电压逆变器
NCP1729外部开关的典型应用,用于增加负输出电流。 NCP1729是一款CMOS电荷泵电压逆变器,设计用于在1.5至5.5 V的输入电压范围内工作,输出电流能力超过50 mA
2020-07-23 10:35:55
电荷泵电路的基本原理
通过了解电荷泵电路、它们是什么、它们是如何工作的、它们的优缺点以及它们的应用,进一步深入研究开关电容电路什么是电荷泵电路?电荷泵电路,或电荷泵调节器,是一种 DC-DC 转换器,利用开关电容技术来
2022-06-14 10:17:30
电荷泵供应多少电流?
我尝试使用电荷泵,可以在纸上(AN60580)但是没有电流的规格。所以我问你,水泵的供应量是多少?SiO电流是25Ma,因此25Ma是最大电流。是真的吗?如果你知道,如何增加最大电流,请回答。谢谢您
2019-05-10 09:47:43
电荷泵升压电路及其工作方法解析
电容器滤除。电荷泵十分适用于便携式应用产品的设计,如蜂窝式电话、寻呼机、蓝牙系统和便携式电子设备。1、电荷泵电路工作原理分析与设计电荷泵也称为开关电容式电压变换器,是一种利用所谓的“快速
2018-10-22 15:20:33
电荷泵工作原理
电荷泵能够产生高于直流输入电压的直流输出电压,甚至可以反极性输出电压。
电路简化图如上,在一个工作周期内,前半个周期输入开关闭合时,输入电压对电容C1充电至输入值;在后半个周期内,输入开关断开,输出
2024-01-27 14:33:33
电荷泵并行背光驱动电路ADP8870电子资料
概述:ADP8870采用小型晶圆级芯片规模封装(WLCSP)或引脚架构芯片级封装(LFCSP)。集三项关键功能于一体:可编程背光LED电荷泵驱动器;用于自动控制LED亮度的光电晶体管输入;以及用于管理输出电流比例的...
2021-04-14 07:06:39
电荷泵解决方案
电荷泵DC/DC转换器将是非常有效的,特别是这种做法消除了对电感器的需要。电荷泵解决方案的一个挑战就是它产生的噪声要高于电感式DC/DC转换器。某些应用设计人员解决这个问题的方法是,在电荷泵输出
2022-11-17 07:22:56
电荷泵设计原理及在电路中的作用
小、EMI干扰较小等优点,所以电荷泵被广泛应用于便携式产品中,为系统提供负的电源电压。将电荷泵与电压基准源相结合,能够在单电源为系统供电的同时,获得一个反相的基准电源。如下图所示,该电路不同于由三端基准和运
2018-10-22 15:20:58
电荷泵软启动问题解惑
在网上查看资料时看到一句关于电荷泵软启动问题的描述,描述如下:软启动可以在启动时阻止在VIN处产生过多的电流流量,从而增加了可定期用于输出电荷储存电容器的电流量。软启动一般在设备被关机时激活,并在
2020-11-20 14:43:06
电荷泵锁相环电路锁定检测的基本原理,影响锁相环数字锁定电路的关键因子是什么?
本文介绍了电荷泵锁相环电路锁定检测的基本原理,通过分析影响锁相环数字锁定电路的关键因子,推导出相位误差的计算公式。并以CDCE72010 为例子,通过实验验证了不合理的电路设计或外围电路参数是如何影响电荷泵锁相环芯片数字锁定指示的准确性。
2021-04-20 06:00:37
电荷泵驱动的典型电路CAT3604
方案一参考论文LED的驱动电路研究大理 硕士 07.06三个简单方案电荷泵驱动的典型电路CAT3604是一个工作在1x、1.5x分数模式下的电荷泵,可调节每只LED白光管脚(共4只LED管脚)的电流
2021-12-30 06:24:47
AAT3142电荷泵式白色LED驱动电路相关资料分享
AAT3142是ANALOGIC公司研制的电荷泵式白色LED驱动芯片,12管脚TSOPJW封装;输入电压范围2.7-5.5V;根据输入电压及白色LED的VF有不升压、升1.5倍及升2倍压的电荷泵
2021-05-20 07:06:54
AHX04A固定5V±2.5%输出的低功耗电荷泵升压转换电路IC
AHX04A固定5V±2.5%输出的低功耗电荷泵升压转换电路IC,AHX04A是一种低噪声、固定频率的电荷泵型转换器,在输入电压范围在 3.0V 到 4.5V该器件可以产生 5V 的输出电压,最大
2021-11-05 11:07:30
CAT3606低噪声电荷泵驱动集成块相关资料分享
CAT3606是Catalyst Semiconductor公司生产的用于LED的电荷泵式驱动电路上的芯片。它是16管脚薄型QFN封装(4mm×4mm×0.8mm);工作温度范围-40℃-+85
2021-04-27 06:28:57
HMC704电荷泵输出怎么测量?环路滤波器输出不对的问题如何解决?
HMC704是电荷泵输出,根据ADIsimPLL设计出了有源环路滤波器,仿真显示能够锁相。但在实际电路测量中,我设置电荷泵输出分别为拉高、中位和拉低输出时,环路滤波器的输出时钟为16V(运放供电电压
2018-12-06 19:30:21
LM2751稳压输出型升压式电荷泵式白色LED驱动电路相关资料分享
概述:LM2751是NATIONAL公司研制的1.5X 2X稳压输出型升压式电荷泵式白色LED驱动集成电路。小尺寸10管脚LLP封装;输入电压范围2.8~5.5V;输出稳压的4.5或5.OV;输出
2021-05-20 06:49:05
LT1182CS LCD对比度正升压/电荷泵转换器的典型应用电路
LT1182CS LCD对比度正升压/电荷泵转换器LT1182CS的典型应用电路。 LT1182是一款双电流模式开关稳压器,可为冷阴极荧光灯(CCFL)和液晶显示器(LCD)对比提供控制功能
2019-04-09 09:27:33
LT1183CS LCD对比度正升压/电荷泵转换器的典型应用电路
LT1183CS LCD对比度正升压/电荷泵转换器LT1183CS的典型应用电路。 LT1183是一款双电流模式开关稳压器,可为冷阴极荧光灯(CCFL)和液晶显示器(LCD)对比提供控制功能
2019-04-09 08:38:41
LT1184FCS LCD对比正负极/电荷泵转换器的典型应用电路
LT1184FCS LCD对比正负极/电荷泵转换器LT1184FCS的典型应用电路。 LT1184F提供CCFL功能。这些IC包括高电流,高效率开关,振荡器,基准电压源,输出驱动逻辑,控制模块和保护电路
2019-04-09 09:27:09
LTC3225是一款基于电荷泵的新型超级电容充电器
电路显示5V电源穿越应用,其中两个串联连接的10F,2.7V超级电容器充电至4.8V,可支持20W超过一秒。 LTC3225是一款基于电荷泵的新型超级电容充电器,用于为超级电容充电至150mA并保持电池平衡,同时LTC4412可在超级电容和主电源之间自动切换
2020-07-17 10:16:35
PRD1211,2 mA参考设计使用带四倍电荷泵的升压转换器
PRD1211,5 Vin,200 Vout,2 mA参考设计。本设计使用带四倍电荷泵的升压转换器。它采用创新的4级电荷泵,将升压级的输出电压提高4倍。可以使用许多不满额定输出电压的器件。此外,级联FET(Q1)用于提高ADP1613的电压能力
2019-07-17 08:11:56
【每日电路赏析】实现电压升高的电荷泵电路
也一并增加多次,每一级对应的是上一级的输出,所以总输出并不是简单的输入相乘。而且加入的层级越多,问题越严重。3.打造一个电荷泵电路我们这里要打造一个简单的三级电荷泵,并运用555定时器来实现。所需电子
2019-10-08 15:28:56
一种电荷泵双极性电源的设计
将电荷泵到电容器上而不是通过电感切换电流来产生输出电压。基于电荷泵的稳压是一种重要的替代方法,比较常见的电感为基础的方法,电荷泵电路are simpler and less expensive; 更
2022-06-17 11:35:40
一种太阳能电荷泵供电电路的方案设计
LTC3204EDC-3.3)。从这个数据表中获取的图像图片由 Digi-Key 提供除了太阳能电池和电荷泵之外,你所需要的就是电容: 一个输入电容、一个电荷泵电路的电容和一个输出电容。很高兴知道,你可以把太阳光
2022-06-17 11:29:55
三通道电荷泵LED驱动器AAT3103资料推荐
AAT3103是ANALOGICTECH公司新推出的一款新型白光LED驱动器。它以电荷泵电路为基础,能驱动3个白光LED,每个LED最大驱动电流可达30mA。电荷泵电路内部有自动控制升压1信道或2
2021-04-19 06:12:42
低噪声稳压电荷泵DCDC转换器LTC3200资料推荐
低噪声稳压电荷泵DCDC转换器LTC3200资料下载内容主要介绍了:LTC3200引脚功能LTC3200内部方框图LTC3200极限参数LTC3200典型应用电路
2021-04-02 07:35:14
具有正电压倍增器的CAT661高频100 mA CMOS电荷泵的典型应用
具有正电压倍增器的CAT661高频100 mA CMOS电荷泵的典型应用。 CAT661是一款电荷泵电压转换器。它可以将正输入电压反转为负输出。只需要两个外部电容
2019-04-24 06:25:57
具有高电流能力的CMOS电荷泵电压逆变器
具有高电流能力的NCP1729正输出倍压器的典型应用。 NCP1729是一款CMOS电荷泵电压逆变器,设计用于在1.5至5.5 V的输入电压范围内工作,输出电流能力超过50 mA
2020-07-22 11:46:37
写配置寄存器后L6480自举电荷泵停止
写入配置寄存器后,L6480控制器电荷泵频率停止。复位引脚上的脉冲似乎什么都不做。是否有适当的顺序重新启动电荷泵频率?我怎样才能解决这个问题?控制器设置:16Mhz内部时钟,无输出,OSCOUT
2018-10-11 11:30:11
分享一种集成电荷泵的芯片方案
小(一般都不会超过 10mA ,具体可以查阅屏体手册),可以采用电荷泵电路。在这里我分享一种集成电荷泵的芯片方案,采用 TI 的 TPS 65140 ,以下是电路图,此电路有一定的应用范围限制,下面我会
2022-03-02 07:30:51
利用电荷泵能够得到95V电压输出吗?
我原来的电路里面用的是MAX1771进行的升压,9V升95V,我现在想请教一下用电荷泵能够实现这个功能吗,如果能实现这两种方法各有什么优点啊
2012-10-17 11:33:35
基于电荷泵的CMOS图像传感器
至少Vthn,因此,在这里使用一个电荷泵电路抬高Vreset_p的幅值,这样就可以在充电周期使VN的电压达到Vdd。当Vreset_p的幅值超过Vdd+Vthn时,M1进入线性区,此时它的导通电阻为
2018-12-04 15:13:20
基于电荷泵的背光源解决方案
LED还具备丰富的三原色色温与高发光效率,一般认为非常适用于液晶显示器的背光照明光源,而电荷泵是利用电容达到升降压的DC/DC转换器,非常适用于手持式系统中小尺寸面板的背光源。电荷泵将能量储存在电容上
2019-05-13 14:11:28
如何选择合适的电荷泵
1、效率优先,兼顾尺寸 如果需要兼顾效率和占用的 PCB 面积大小时,可考虑选用电荷泵。例如电池供电的应用中,效率的提高将直接转变为工作时间的有效延长。通常电荷泵可实现 90% 的峰值效率,更重
2018-11-22 21:23:00
带有集成电荷泵升压转换器的压电发声器驱动器
PAM8904 18Vpp输出Peizo发声器驱动器的典型应用。 PAM8904是一款带有集成电荷泵升压转换器的压电发声器驱动器。 PAM8904能够通过5.5V电源驱动24VPP陶瓷/压电发声器。电荷泵可以以1x,2x或3x模式运行
2020-08-12 09:58:27
带正电压倍增器的CAT660 100 mA CMOS电荷泵的典型应用
带正电压倍增器的CAT660 100 mA CMOS电荷泵的典型应用。 CAT660是一款电荷泵电压转换器。它将1.5 V至5.5 V输入反相至-1.5 V至-5.5 V输出
2019-04-23 09:22:31
带电压反相器的CAT660 100 mA CMOS电荷泵的典型应用
带电压反相器的CAT660 100 mA CMOS电荷泵的典型应用。 CAT660是一款电荷泵电压转换器。它将1.5 V至5.5 V输入反相至-1.5 V至-5.5 V输出
2019-04-23 09:21:59
带电压反相器的CAT661高频100mA CMOS电荷泵的典型应用
带电压反相器的CAT661高频100 mA CMOS电荷泵的典型应用。 CAT661是一款电荷泵电压转换器。它可以将正输入电压反转为负输出。只需要两个外部电容
2019-04-23 09:20:52
怎么理解过压保护芯片里电荷泵的作用?
我看到有人把电荷泵接在NMOS的栅极,是为了提高VGS,以降低导通内阻。而图中把电荷泵接在NMOS的漏极,有什么作用呢?是用于控制VDS的电压?小白求指导
2019-12-24 12:05:32
挖掘肖特基二极管在电荷泵电路中发挥出的“神奇力量”?
的整数倍的正、负电源电压. 下面就说明基本的肖特基二极管电荷泵电路. 电路特点 1.简单由肖特基二极管(使用体积小而且价格便宜的2-unit封装最合适)和陶瓷电容组成. 2.可以输出正、负电
2018-12-06 11:56:24
有的工艺角下电荷泵的初始电压就很高,怎么降低?
有的工艺角下电荷泵的初始电压就很高,例如1.8v的电源电压,仿真的时候最开始电压就是1.7v,后面鉴频鉴相的UP一直是高,导致电压根本降不下来
2021-06-24 07:06:28
设计采用ADP1613升压转换器和四倍电荷泵
设计采用ADP1613升压转换器和四倍电荷泵。它采用创新的4级电荷泵,将升压级的输出电压提高4倍。可以使用许多不满额定输出电压的器件。此外,级联FET(Q1)用于提高ADP1613的电压能力。使我们能够使用非常便宜的集成FET升压控制器
2019-07-16 06:35:37
请问AD9901内部是否已经集成了电荷泵?
直流鉴相误差信号,但考虑到器件电平上的噪声,可以加电荷泵来产生实际的直流输出,请问AD9901内部是否已经集成了电荷泵?[size=13.3333330154419px] [size
2018-09-28 15:34:12
采用电荷泵给CAN收发器供电
电荷泵不会明显影响电路性能。 8. 辐射测试(EME) 辐射测试在同一个进行,除了将功率注入电路(HF发生器)替换为频谱分析仪外,测试装置与DPI测试相同。测试也是在CAN收发器正常工作模式下进行
2021-07-14 07:00:00
高效升压式电荷泵LT1937
高效升压式电荷泵LT1937 LT1937是凌特公司生产的升压式电荷泵,它也是一种转换效率为84%的LED驱动芯片。  
2008-07-18 10:01:26
一种新型低电荷共享电荷泵电路
一种新型低电荷共享电荷泵电路赵国光 李斌(广州市华南理工大学物理科学与技术学院)摘要:采用GSMC0.18μm 工艺设计了性能优良的电荷泵,与传统电荷泵相比,此电荷泵具
2009-12-14 11:29:3524
电荷泵式功率因数校正电子镇流器
电荷泵功率因数校正(CPPFC)电子镇流器由于其良好的功率因数校正性能越来越受到人们的关注。以几种带电荷泵功率因数校正器的电子镇流器为例子,介绍了电荷泵功率因数校正
2010-05-08 08:44:3954
电荷泵式电子镇流器电路分析
摘要:电荷泵式电子镇流器,采用充电电容和高频交流源,以实现功率因数校正(PFC),这已成为荧光灯镇流器中极有吸引力的电路拓扑。但这种电路还存在一些问题,如输入电流的THD值高,灯电流的波峰比(CF)高。对这些问题产生的根源进行了分析,并提出解决方法。
2011-02-16 16:33:40131
电荷泵式PFC双管正激变换器
分析了电荷泵电路实现功率因数校正(PFC)的基本原理和条件;提出了一种电荷泵式PFC双管正激变换器;详细分析了该变换器的工作原理;讨论了输入限流电感和电荷泵电容的参数设计;
2011-10-21 18:33:2168
电荷泵电路图_电荷泵的优点和缺点
电荷泵应用在电路中实质作用相当于倍压整流电路,在一些需用高电压、小电流的地方,常常使用电荷泵构成的倍压整流电路。倍压整流的意思就是可以把较低的交流电压,用耐压较低的整流二极管和电容器,整出一个较高
2017-10-31 15:22:4929617
电荷泵电路动作原理及特点
本文主要介绍了电荷泵电路动作原理及特点。电荷泵电路通常又叫为切换式电容转换器,包含二极管或切换开关与电容的切换网路。若控制脉冲为低电平时,其反向输出为高电平。当控制脉冲为高电平时,其反向输出为低电平。下面具体来看看电荷泵电路动作原理及特点分析。
2018-01-06 14:08:3021834
评论
查看更多