3.2.2 被动式功率因数校正
目前消费类电子、电气产品所采用的开关电源电路多是开关频率比较低、电路结构简单、成本较低的那种形式,其谐波电流发射超过限值的问题也较普遍。
在这种情况下,成本控制可能是主要的考虑。
采用低频滤波电路可以降低谐波成份到标准限值以下,这种措施属于被动式功率因数校正。这种方案适合于中小功率设备。
因为需要滤除的是工频谐波,对功率较大的设备,滤波器的重量和成本可能会超过设备电源本身。
3.2.3 其它解决措施
对那些设备整体呈感性或容性的电子、电气设备(如电动设备等),在正常工作时,其电流波形的峰值出现时间可能会滞后或超前电压波形的峰值,造成产品的功率因素的下降。
对此类设备较常采用的方式是对应的容性或感性补偿,使补偿后的电流波形的峰值出现时间与电压波形的峰值出现时间保持同步。
此类补偿需注意,不要出现过补偿,否则,效果适得其反。
此类补偿方式多用于电力系统的功率因素补偿,一般的电子、电气设备上较少采用。
因为,一般的电子、电气设备的谐波问题主要表现为波形畸变,而不仅是电流波形相位滞后、超前的问题,这种补偿方式效果不明显。
下面首先介绍两种被动式功率因数校正电路,然后再介绍主动式功率因数校正电路。
对一般用电设备来说,这两种被动式功率因数校正电路所增加的元件成本均比较低,体积也不大,一般是可以接受的。
采用主动式功率因数校正电路的比被动式成本略高,但校正效果会比被动式好的多。
对有些采用其它方案不能凑效的产品,主动式功率因数校正电路可能是最后唯一的选择。
当然,有些产品为提高产品质量和档次,也会主动采用主动式功率因数校正电路。
3.3 利用电感储能电流泵式解决方案
该方案适用于直接利用高压整流方式来供电的产品。电路如图7 所示。
这个电路仅仅由一个扼流圈L1、一个快速开关二极管D1 和一个耐冲击电容C 组成。用这三只元件
构成一个电流泵电路,取代原来开关电源里的由二极管和RC 网络组成的限幅缓冲电路。
扼流圈的电感L1 大概是开关变压器的主电感L 的4 倍。
耦合电容C 应该能够耐高压和冲击,它的容量是10 到30nF。
对应开关电源的功率从75W 到300W 的范围。
C1 电容应该大到足够满足最大的谐波电流限值,二极管选用快恢复特性功率二极管。
此电路结合主动功率因数校正的原理,利用电感储能延长整流导通的时间,从而有效减少了输入的谐波电流幅度。
应用此电路时,应注意调整开关变压器和开关晶体管的参数,否则易损坏开关晶体管。
此电路宜应用在电源开关频率较高,开关晶体管导通电流大,内阻很小的电源电路中。
图7:电流泵式被动功率因数校正电路
3.4 低频谐波电流抑制滤波解决方案
电路如图8 所示。该方案适用于直接利用高压整流方式来供电的产品。
这个电路仅仅由一个低频扼流圈组成,插入整流桥和滤波电容之间。
其工作原理非常简单,低频扼流圈的电感和整流电容以及低频扼流圈的分布电容共同组成一个低频谐波电流滤波器。
图8:低频滤波器被动功率因数校正电路
电路参数要设计成对50Hz 的基波成份衰减很小,对三次以上谐波成份衰减很大,尤其是第三次谐波(150Hz)的衰减最大。
低频谐波电流抑制滤波器在电源整流之后或者之前的某些点插入电流回路,就可以起到抑制谐波电流的目的。
可以解决300W 以下产品的谐波电流问题,并且不需要电路其它参数作任何改变,也不会降低原电源电路的其它性能。
其缺点是体积较大,重量约100-200 克。
3.5 主动PFC 解决方案
该方案是在主电源上串联另一个电源变换器,它强迫电源紧密跟随正弦型线电压获取电流。
图9 为其原理示意图。
该方案适用于直接利用高压整流方式来供电的产品。
图9:主动式PFC原理示意图
工频交流经过整流器整流后变成波动的直流,该波动直流提供给PFC 转换电路进行转换。
对一般普通的开关电源来说,由于PFC 控制电路相当于在原开关电源的整流和滤波回路之间增加了一级开关回路。
一方面增加了电路的复杂程度,可能需要对原系统的电源部分重新设计和排版;
另一方面,由于相当于增加了一级开关转换电路,电源产生的射频骚扰必然有所增加甚至超标,这时可能需要采取一些措施使其重新符合相关标准的要求。
3.6 谐波问题的其它对策
以上三种谐波电流问题解决方案主要适用于直接利用高压整流方式来供电的产品。
因为此类产品谐波电流非常大,若不采取相应对策,则难以满足谐波标准要求。
对通过工频变压器供电的产品和直接使用交流电源而不通过电源变换电路二次供电的家电产品,一
般情况下谐波电流不大,且其波电流限值比较宽松,即使不采取谐波电流抑制措施,其谐波电流测试合
格率还是非常高的。
但我们依然需要注意以下几个方面的内容。
对那些非高压整流方式来供电的家电产品,低次谐波电流限值比较宽松,合格是比较容易的,此时,
应注意的是20 次以上的高次谐波电流容易出现问题。
对此类的高次谐波超标问题,一般在电源回路中增加适当的高次谐波滤波电感(高频扼流圈)即可解决问题。
由于半波整流方式和利用相位截波方式调节(如可控硅非过零控制)对电源进行对称和非对称控制
都很容易产生非常大的谐波电流。谐波电流标准一般不允许采用半波整流方式和对电源进行对称和非对称控制。
若测试时谐波电流超标,建议将电源半波整流方式和对称/非对称控制方式改为其他的控制方式。
如将半波整流改为全波整流或桥式整流方式。将利用相位截波方式调节的对称/非对称控制方式改成对称的过零触发控制方式。可以有效地解决此类谐波问题。
4.瞬态脉冲抗扰度测试常见问题对策及整改措施
4.1 综述
电磁兼容所说的瞬态脉冲是指干扰脉冲是断续性的,一般具有较高的干扰电压,较快速的脉冲上升时间,较宽的频谱范围。一般包括:静电放电、电快速瞬变脉冲群、浪涌冲击等。
由于它们具有以上共同特点,因此在试验结果的判断及抑制电路上有较大的共同点。在此处先进行介绍。
4.1.1 瞬态脉冲抗扰度测试常见的试验结果说明
对不同试验结果,可以根据该产品的工作条件和功能规范按以下内容分类:
A:技术要求范围内的性能正常;
B:功能暂时降低或丧失,但可自行恢复性能;
C:功能暂时降低或丧失,要求操作人员干预或系统复位;
D:由于设备(元件)或软件的损坏或数据的丧失,而造成不可恢复的功能降低或丧失。
符合A 的产品,试验结果判合格。这意味着产品在整个试验过程中功能正常,性能指标符合技术要求。
符合B 的产品,试验结果应视其产品标准、产品使用说明书或者试验大纲的规定,当认为某些影响不重要时,可以判为合格。
符合C 的产品,试验结果除了特殊情况并且不会造成危害以外,多数判为不合格。
符合D 的产品判别为不合格。
符合B 和C 的产品试验报告中应写明B 类或C 类评判依据。符合B 类应记录其丧失功能的时间。
4.1.2 常用的瞬态脉冲抑制电路:
4.1.2.1 箝位二极管保护电路:
工作原理如图 10。
图10 二极管保护电路
使用2 只二极管的目的是为了同时抑制正、负极性的瞬态电压。瞬态电压被箝位在V++VPN~V--VPN 范围内,串联电阻担负功率耗散的作用。利用现有电源的电压范围作为瞬态电压的抑制范围,二极管的正向导通电流和串联电阻的阻值决定了该电路的保护能力。本电路具有极好的保护效果,同时其代价低廉,适合成本控制比较严、静电放电强度和频率不十分严重的场合。
4.1.2.2 压敏电阻保护电路:
压敏电阻的阻值随两端电压变化而呈非线性变化。当施加在其两端的电压小于阀值电压时,器件呈现无穷大的电阻;当施加在其两端的电压大于阀值电压时,器件呈现很小电阻值。此物理现象类似稳压管的齐纳击穿现象,不同的是压敏电阻无电压极性要求。使用压敏电阻保护电路的特点是简单、经济、瞬态抑制效果好,且可以获得较大的保护功率。
评论
查看更多