石墨烯是一种非常薄的碳晶体,仅有一个原子厚,但肉眼可见,同时其强度的钢铁的200倍、并且拥有极强的柔韧性,另外它还抗火、但却是非常棒的热导体。
这种神奇的材料,可能是未来电池的关键、也可能重新塑造可穿戴设备和各种传感器。
我们知道,可穿戴设备目前面对的一大挑战便是佩戴性。大多数智能手表仍硕大无比,手环也不够漂亮,更不用说外星人般的智能服装了,石墨烯则可以改变一切。凭借其超薄、柔性、坚固的特色,可穿戴设备无疑有更多设计空间,让可穿戴设备变得更加灵活、耐用、美观并适合穿戴。
而石墨烯电池是一种基于二维碳材料所制作的电池,它的出现更是让材料科学界兴奋不已,在未来使用石墨烯电池可能会成为一种潮流趋势。在所有种类的电池当中,石墨烯电池拥有最高的能量密度以及最强的电能储备能力。
在新能源汽车锂电材料方面,多篇报道重点提及这方面打开石墨烯几十亿的空间,并且有充电10分钟,行驶1000公里的消息。
2014年12月初,西方媒体报道,西班牙Graphenano公司和西班牙科尔瓦多大学合作研发的石墨烯电池,一次充电时间只需8分钟,可行驶1000公里。如果这一结果属实,那么毫无疑问电动汽车将完全颠覆传统汽油汽车,成为汽车的主力军。
在手机电池方面,锂电池传统制造强国是日本和韩国,在石墨烯电池上他们也正在抢夺技术先机。韩国科学家早在2014年11月就宣布,最新发明的石墨烯超级手机电池,可存储 与传统电池等量的电量,但充电时间只需16秒。美国伦斯勒理工学院研究人员也预计,石墨烯阳极材料比如今锂离子电池中惯用的石墨阳极充电或放电速度快10 倍。
7月8日,国内最早进入石墨烯领域的上市公司之一东旭光电推出了世界首款石墨烯基锂离子电池产品——“烯王”。其在满足5C条件下,可实现15分钟内快速充放电,是普通充电产品的1/24,而且能在-30~80℃环境下工作,循环寿命更高达3500次左右。据悉,“烯王”产品将先在动力玩具、智能家居、动力工具、低温储能等方面应用,后续随着技术成熟和经验积累,将尝试扩展到电动汽车领域。
这种神奇材料的制造方法:
1、氧化还原法(性能差、不纯)
2、微机械剥离法(成本高、产率低)
3、化学气相沉积法(成本高、性能不稳定)
4、外延生长法(成本极高,难度大)
可是!生产成本昂贵一直是难题,最高达到5000元/克。
据不完全统计,目前全球已有近300家公司涉足石墨烯研究,包括IBM、英特尔、美国晟碟、陶氏化学、通用、杜邦等。其中,三星、IBM、东芝、韩国科学技术研究所、韩国成均馆大学等企业和高校具有较高竞争力。但是大部分企业并没有在石墨烯电池领域予以布局,相关的专利也十分有限,他们大都布局在柔性器件半导体显示屏等方面。
应用一:石墨烯触摸屏
这应该是石墨烯呼声最高的应用。智能手机最关键的一部分就是有一块既能导电又非常透明的触摸屏。恰好,这正是石墨烯的特性!而且石墨烯的强度和柔韧性,都比目前的透明电极材料氧化铟锡(ITO)要更好。
早在2010年,韩国成均馆大学和三星公司的研究人员,就制造出由多层石墨烯和聚酯片基底组成的透明可弯曲显示屏。当时,论文通讯作者、成均馆大学教授洪秉就提出,他们的方法可用于制造基于石墨烯的太阳能电池、触摸传感器和平板显示器。但他当时也承认,大规模制造和商业化还为时尚早。
英国曼彻斯特大学研究人员与石墨烯生产商BGT材料有限公司合作,用压缩石墨烯墨水打印出射频天线。——科学家将石墨烯材料的应用又向前推进了一大步。这种天线灵活、环保,可廉价大批量生产,能够应用在无线射频识别(RFID)标签和无线传感器上。
目前,大多数商用RFID标签由金属铝和铜组成,材料昂贵、制作过程复杂,而基于石墨烯的RFID标签能够大幅度降低材料成本。该研究团队已经开始计划 开发石墨烯RFID标签,以及传感器和可穿戴电子产品了。石墨烯油墨成本低且很柔软,比其他如纳米金属粒子导电油墨的性能还要强大很多。
应用三:石墨烯灯泡
石墨烯可调光灯泡号称可节省10%的能源,使用寿命也更长,内含由英国曼彻斯特大学所设计、外罩石墨烯的灯丝状LED。石墨烯灯泡价格每颗约15英镑,这款灯泡的设计是以传统灯泡形状为基础,石墨烯能让灯泡的导电以及散热更有效率。
身处物联网洪流的你还在等什么!“关注物联网新机遇的你,怎能错过这个饕餮盛宴!!由华强聚丰旗下电子发烧友网举办的第三届“中国IoT大会”将 于12月2日在深圳隆重举行:全球化的 视野、更高价值的独家观点、更专业的技术分享、更前沿的脉动把握,汇聚全球物联网知名企业与精英的盛典,你不可错过!更多信息欢迎大家继续关注电子发烧友 网!”(点击图片查看详情)
应用四:更强夜视能力的视觉传感器
现在夜视很多用红外线系统,但是这种设备体积大是个硬伤啊。于是,研究人员将基于石墨烯的光热电探测器 (photothermoelectricdetector)整合在微机械氮化硅薄膜 (micrmachinedsiliconnitridemembrane)上。叮咚,数据来了:7~9V/W的响应在10.6微米(micron)波长 以及23ms时间常数下达成;氮化硅薄膜带来的温度隔离以及宽带红外线吸收,能实现300~500K的黑体目标(blackbodytarget)探测与成像。
此外,石墨烯的高载体迁移率(carriermobility)可用以抵抗噪声,因此免除了冷却技术的需求,并足以在不需低温冷却的前提下侦测来自人体的热辐射。
应用五:芯片上光通讯
“我们已开发出世界上最薄的灯泡!”纽约哥伦比亚大学工程学院教授JamesHone说,这种新型的“宽带”光发射器可以整合到芯片上,可为实现薄如原子、可挠曲及透明的显示器铺路,还能做到基于石墨烯的芯片上(On-chip)光通讯。
今年稍早,曼彻斯特大学(ManchesterUniversity)已发布以石墨烯为基础开发的灯泡,该灯泡是将基于长丝形的发光二极管(LED)涂 覆在石墨烯上,而该大学也声称,此可调灯光的LED灯泡可减少10%的耗电量。芯片上可见光的关键是开发完全整合“光子(Photonic)”电路,该电路用于灯泡时,可如同现阶段在半导体整合电路的电流。直到现在,研究人员尚未将白炽灯泡放在芯片上,这是因为点燃灯泡所需的温度,微型金属导线无法承受。
石墨烯能达到的温度超过摄氏2,500度,不需要额外放大就可灼伤肉眼。研究人员也发现石墨烯在较高温度下,会变成较差的热导体,这意味着热量会在芯片 的中心被限制为一个“热点”。一名研究人员指出,悬浮的石墨烯可被加热到太阳一半的温度,且可靠度比固定在固体基板上的石墨烯高1,000倍。
应用六:侦测气体、检测DNA与蛋白质
由瑞士洛桑联邦理工学院(EPFL)与西班牙光子科学院共同组成的一支研究团队,最近利用石墨烯改善了分子检测的红外线吸收光谱。传统上,这种方法主要利用光激发分子,依据各自性质产生不同的振动,同时创造出一种能以反射光读取的独特标识。但这种方法并不适用于纳米级分子,因为纳米分子通常比用于检测分子的6微米红外光子波长明显更小。然而,研究人员们发现,石墨烯能够聚光于特定焦点上,从而准确地“听”到纳米级分子的振动。
石墨烯可实现高敏感度的振动光谱与检测折射率Source:EPFL根据EPFL,“当光线到达时,石墨烯纳米结构中的电子开始振荡。这种现象被称为‘局部表面等 离子共振’,从而将光线集中于微小的焦点,其大小约相当于目标分子的尺寸,因而能够用于检测纳米结构。”针对这种传感器的潜在应用范围从侦测气体外泄、检测有毒与易爆气体、测量并检测DNA与蛋白质以及水中污染物。另外,石墨烯拥有较大的比表面积,使其具备了制作高灵敏度传感器的条件,一旦气体被吸附于石墨烯表面,其表面电阻就会出现变化,然后结合电传感检测器,就可以让石墨烯成为一种优异的气体传感器。
应用七:3D成像更精确
劳伦斯伯克利国家实验室(LBNL)的研究人员使用单层石墨烯作为一个清晰类透镜盖(Lens-likeCap)—称为石墨烯电池液(GLC)—为单个胶状纳米粒子的原子创造新的成像系统。这个过程将大大简化反复试验原子级(Atomic-scale)工程学的设计和重新设计过程。
大多数电子产业使用的纳米粒子都存在于流体溶液中,且也被允许可处于干燥状态。常用的透射电子显微镜(TEM)可在纳米粒子干燥后为其成像,但是干燥的流体 往往会扭曲纳米粒子的结构,而校正结构的过程通常相当复杂,一个设计完成在之前,须经过反复多次的试验。OK,石墨烯可作为敏感纳米粒子的保护 层,Ercius的团队第一次使用的新技术,他们称之为“SINGLE”—由石墨烯电池液电子显微镜鉴定的纳米粒子结构—可在计算机中显示3D模型,目的 在于设计可以组合在一起的“积木”,以形成更大的特定电子和物理特性架构,满足现今许多产业需求。
在LBNL,Ercius的下一步将使用更快的每秒400帧的摄影镜头,以更精确的构造出TR3D模型,精准度可超越他们现在拥有的2纳米精准度设备。
应用八:超导体
加拿大英属哥伦比亚大学(UBC)的研究人员,透过掺杂锂后再使其冷却至5.9度绝对温度(Kelvin)。但这还只是个开始,因为UBC教授 AndreaDamascelli希望使用与先前相同的方法,加上他自已的一点秘密配方,从而让掺杂的石墨烯达到更高的临界温度(Tc;即变成超导体)。Damasdcelli已经在石墨烯原子单层中试验过各种掺杂物了,他并测量这种可吸附的原子是否在表面上扩散,以及附着于石墨烯晶格中。
下一步,Damasdcelli的研究小组以及在全球的其他同事们将共同为掺杂的石墨烯材料调整参数,希望最终能在正常的大气压力与室温下实现超导体,或至少是在可轻松实现商用产品的温度条件下,例如液态氮的温度——77度绝对温度,可望较易于在设备中进行维护。
应用九:即热功能
不能小瞧石墨烯的加热功能。“用很小电流、很低功率就可以热起来,只有石墨烯和碳纳米管可以做到,这样用一块手机电池就可以驱动。因此,军用、救生用加 热衣服是正在开发的一种产品。其他产品还包括利用石墨烯复合材料的防弹材料和涂料,利用石墨烯薄膜的便携式水处理设备,以及储能电池的改性。
应用十:太阳能电池
在麻省理工学院的一份学术报告中指出,石墨烯已经被视为用于打造第三代太阳能电池的最佳备选材料之一。很巧的是,苹果公司2013年提交了一份专利申 请,申请内容正是关于在一些设备中搭载太阳能电池的解决方案。“石墨烯良好的电导性能和透光性能,使它在透明电导电极方面有非常好的应用前景。”石墨烯太 阳能技术的光电转换效率高达60%,是现有多晶硅太阳能技术的2倍。当前市面上的太阳能电池板基本为多晶硅,其光电转换率为30%左右。
与多晶硅不同的是,石墨烯可以作为纳米涂层,涂于设备表面,以获得光电转换的能力。同时也可以制成柔性、透明的光伏电池板。因此,未来具备太阳能电源的设备将更为小巧和美观,同时可以不受太阳能电池板本身的影响而改变产品设计。另外,石墨烯可作为柔性能量存储,将来用于柔性可穿戴设备,柔性智能设备。
应用十一:观察大脑活动
一篇刊载在Phys.org上的文章指出,“神经信号的电气监控和刺激是研究脑功能的一种唯一可以依靠的技术,而使用光子(photons)而非电子的新兴光学技术为神经网络结构的可视化及大脑功能的探索,开启了新的契机。看明白了吧,电气和光学技术具有明显的互补优势,如果能一起使用,就太好了,但难点是:传统金属电极技术太厚了,一般大于500nm,光无法穿透!
石墨烯有弹性,又柔软,导电性能又良好,而且无毒。该技术的应用包括神经系统、心脏监护,甚至是隐形眼镜(contactlens)。
由DARPA的RE-NET计划所资助开发的新的石墨烯传感器技术是可以导电的,且只有4个原子厚,比目前的触点薄数百倍(上中)。这种极薄的厚度使几 乎所有的光可以穿越很宽范围的波长。放置在一块与组织形状相符的柔性塑料里衬上之传感器(下方)是概念验证工具的一部分,它展示出了更小、更具透光性的触 点,且可同时使用电气和光学方法来对神经组织进行测量与刺激(右上)。数据源:DARPA。
尽管在电子半导体行业有着众多有前景的应用,但石墨烯的规模化之前一切还不现实。
1、目前制备石墨烯极其困难是学界共识
在回答这个问题之前,我们先来看看究竟什么是石墨烯。 2004年,英国曼彻斯特大学的安德烈?盖姆和康斯坦丁?诺沃肖洛夫从石墨薄片中剥离出了石墨烯,他们二人因此荣获2010年诺贝尔物理学奖。这里的石墨 烯,是由单层碳原子层构成的蜂窝状晶格二维原子晶体,理论厚度仅为0.34纳米,其具有优异的电学、热传导、阻隔性等材料性能,因此其在电池领域的应用被 很多人看好,称之为“材料之王”。
英国曼彻斯特大学的安德烈?盖姆和康斯坦丁?诺沃肖洛夫从石墨薄片中剥离出了石墨烯,他们二人因此荣获2010年诺贝尔物理学奖
但实际上,学术界一直对石墨烯有个共同的看法,即目前制造石墨烯的成本过高并且技术方面并不完善,若要实现工业化应用现在还存在很大的困难。
比 如要想获得电学和机械性能都最佳的石墨烯样品,依然需要依靠最费时费力费钱的手段——机械剥离法,即用胶带粘到石墨上,手工把石墨烯离析出来。2004年 诺沃肖洛夫他们就是这么制备出石墨烯的。尽管所需的设备和技术含量看起来都很低,但问题是成功率更低,弄点儿样品做研究还可以,要是进行工业化生产,这样 的手段毫无用途,就是掌握了全世界的石墨矿也没有任何商业价值。
2、号称能量产的多为石墨微片或畸形圆环,并非真正的石墨烯
经 过这些年的努力,尽管科学家们找到了一些能够增加产量、又能够降低成本的石墨烯制造方法,但是迄今为止还没有真的能适合工业化低成本大规模推广生产的技 术。一些厂家宣称可以量产百吨级别的石墨烯,其实量产出来的根本就不是真正的石墨烯物质。得到的除了单层的石墨烯,还有两层的、三层的甚至更多层数的石墨 微片。
在另外一个方面,就是用一些新的生产方法得到大量的单层的石墨烯,虽然一片石墨烯的中央部分是完美的六元环,但在边缘部分往往会被打 乱,成为五元环或七元环。如果制成石墨烯产品,这些畸形环不但分布在边缘,还存在于每“一片”在做出来的石墨烯内部,成为结构弱点、容易断裂。
中国科学院院士、中国科学院物理研究所研究员高鸿钧说,在实际应用中,只有没有任何缺陷的石墨烯才具备强大特性。否则,整个石墨烯产品的强度要被大幅削弱。而事实上,也正是这样的障碍,真正意义上的石墨烯电池大规模商业化生产目前为时尚早。
北京有色金属研究总院高级工程师、清华大学博士刘冠伟在接受北京科技报采访时表示,即便是现在有企业宣称有新的石墨烯产品问世了,石墨烯在这种产品中也多是扮演添加剂的角色,其在电池领域也不例外。
上海交通大学微纳科学与技术研究院研究员、博士生导师魏良明主要从事新一代高性能锂离子电池/超级电容器以及传感器的研究,他说,现在石墨烯作为单一的产品 还未有应用突破,在东旭光电宣称的世界首款石墨烯基锂离子电池产品中,石墨烯在其中仅仅是导电或者是电极嵌锂的复合材料。
3、东旭光电公布的“烯王”参数真实性有待检测
石墨烯电池又被称之为超级电池,按照一些科学家们的设想,其应该是利用石墨烯材料打造的全新形态的电池。但是因为技术实现的困难,目前国际上并没有取得太大 的进展。这些年中国也并没有从全新体系下研发石墨烯电池,目前主流的设想是利用石墨烯改造现有的锂电子电池,东旭光电推出的“烯王”也是这种思路下的产物。
正如专家所分析的,为了避免外界的非议和质疑,东旭光电自身的确没有将“烯王”直接称之为石墨烯电池,市场上盛传的概念主要是来自资本市场及外界的炒作。
尽管东旭光电方面也公布了“烯王”的一些参数。但是有业界人士表示,参数的真实性还有待检测。中国科学院物理研究所固态离子学课题组组长黄学杰教授说,电池电性能主要有:比能量、能量密度、充放电倍率、循环寿命、日历寿命、安全性、自放电率、工作温度范围等,可以根据不同的应用需求进行设计。而东旭光电在发 布会上只提到了充放电倍率、寿命、工作温度范围等三个参数,这种单独提出几个参数的讨论方法一般适用于科研论文,如果作为产品,就必须就电池性能的所有参数展开讨论。
“由于他们公布的参数不全,电池的能量密度究竟是多少,还无法判断,电池的性能究竟怎么样目前也不好做出评价。”刘冠伟表示。
在一些研究石墨烯的行业人士看来,“烯王”这样的石墨烯基锂电池实际上就类似于一个充电宝,或许能提高充放电速度,但对于电池的容量并没有什么改观。并没有取得革命性的突破。
4、严谨的研究机构发表论文时不敢轻言”石墨烯电池”
中国科学院物理研究所固态离子学课题组组长黄学杰教授认为,目前在正极里添加少量石墨烯可以增加正极的电子电导而改善电池的放电倍率特性,但一般添加量不到百分之一,不能说加了一点石墨烯的锂离子电池就变成了石墨烯电池。
更 何况目前的石墨烯电池只是被添加了一些被称之为多层石墨烯的石墨片层成分而已。从理论上而言,单层石墨烯导电性最好,用于电池充电时间短,而层数越多导电性越差,用于电池充电时间越长。目前几乎没有企业敢声称自己是使用单层石墨烯造出了电池,更多的使用的只是石墨烯的混合物,确切地说是含有少量石墨烯成分 的细小的多层石墨微片。
就是一些严谨的研究机构在发表权威论文时也不敢轻易用石墨烯电池的说法。2015年12月中旬,中科院上海硅酸盐所 的研究团队在《科学》上发文指出,其研制出一种高性能超级电容器电极材料,一些媒体盛赞:“该材料具有极佳的电化学储能特性,可用作电动车的‘超强电池’,这种电池的最大亮点就是充电7分钟,行驶35公里。”而后石墨烯电池概念被爆炒。但上海硅酸盐所的官方网站给出的消息是:“中国科学院上海硅酸盐研 究所研究员黄富强带领的研究团队与北京大学、美国宾夕法尼亚大学的科研人员合作,合成了一种有序介孔(中孔之意)少层碳的新型材料。”并且《科学》杂志上 的这篇论文也没有提到石墨烯,而是碳材料。
据了解,黄富强在投稿过程中一直采用“介孔石墨烯”的名称,最后出版时改用少层碳。他们认为,外 界将其超级电容器称作电池也不妥当。事实上,超级电容器确实并非电池,而是介于二次电池和传统电容器之间的一种电化学储能装置。但是现在人常常混淆电容器 与电池的概念,把现在利用石墨烯或者石墨多层微片制造的电容器当成了电池,国内外制造的超级电容器当成了超级电池。
5、炒作”石墨烯电池”概念其噱头意义远大于实用价值
在学术界看来,目前所热炒的石墨烯电池还是一个伪概念,目前所标榜的石墨烯电池并不存在。中国有数十家上市公司布局石墨烯动力电池领域,然而真正拿得出可以大规模量产装机产品的几乎没有。并且就是在世界范围内,目前能够规模化生产的石墨烯电池也没有。
在刘冠伟看来,现在很多公司炒作这个概念其噱头意义远大于实用价值。他甚至表示,石墨烯材料本身具有的纳米材料的高比表面积等性质与现在的锂离子电池工业的技术体系也不兼容,因此应用的希望十分渺茫。
即使有石墨烯超级电池出现,相信这几分钟的充电功率会大到目前没有任何电压设备、电缆线能够承受住如此电压
刘冠伟认为,在实验室做出一个快充的小电池很容易,但是要让它走出实验室,实现工业化生产,中间需要解决很多的问题。例 如对于“充电8分钟,行驶1000公里”的描述。某不愿具名的国内新能源车企技术总监认为,即使有这样的电池出现,相信这几分钟的充电功率会大到目前没有 任何电压设备、电缆线能够承受住如此电压。
因此,目前石墨烯在电池上的应用,主要是和硅结合在电池负极里面代替原来的石墨,这样可以多吸带 电荷,提升电池的导电率,减少充放电的电阻,性能提升效果也就仅限如此。事实上,在新能源电池领域,石墨烯电池所谓的颠覆性理论从未得到业内人士的认可。 尽管石墨烯可以做导电剂,促进锂电池快速充放,理论上能提高倍率性能,但若分散工艺不到位,混料不均,仍难以发挥效用。
根据目前的发展态势,刘冠伟认为在新型柔性电池、器件、显示、催化剂方面,石墨烯可能是有前景的。但是在蓄电池方面,他并不看好。
即使有石墨烯超级电池出现,相信这几分钟的充电功率会大到目前没有任何电压设备、电缆线能够承受住如此电压
6、石墨烯太贵,即使制成电池,普通消费者也难以承受
刘冠伟说,在锂电池中应用,石墨烯主要起到的作用,一是导电剂,二是可能做电极嵌锂材料。其实,这两点,都是在和传统的导电碳/石墨竞争。“那么问题来了,你知道导电碳/石墨多便宜么?都是论吨卖的,论克卖的石墨烯哪天能降到这个价?现在锂电池用的各种材料,都是一吨几万、十万左右的东西,而且天天承受着要 求降价的压力,用石墨烯完全不现实。” 这主要是石墨烯太贵。一克上千的价格,这不是一般企业能够承受得了的。而数年前,石墨烯的价格曾高达每克5000元,远超黄金价格。另外,就是这样的电池造出来了,消费者也难以承受。
2016年4月,东旭光电收购上海碳源汇谷50.5%的股权,成为上海碳源汇谷的控股股东。公开资料显示,这是一家专注于石墨烯规模化制备、应用技术开发的企业,在单层氧化石墨烯以及石墨烯的制备、分离和纯化技术与工艺方面均取得了突破性进展,规模化可使石墨烯产品制备成本大幅降低。
不过即使是这样,石墨烯的价格依旧不低,“购买的价格主要看你是做什么用,如果只需少量购买,价格是600元/克,需要的规模大的话,可以降低到几十元。”8月7日下午,上海碳源汇谷一位姓魏的销售人员对记者表示。可几十元每克的价格依旧在市场缺乏竞争力。“烯王”作 为东旭光电自身的产品,尽管石墨烯的原料供应成本可以更低一些,但也不会低到那里去,在采访中魏姓销售人员已经否认了他们真实成本只有几元的说法,“这样的说法根本就不是从我们这里流传出去的。”他说。这意味着用石墨烯作为电池材料的“烯王”未来必然要面临成本的考验。
上海交通大学微纳科学与技术研究院研究员、博士生导师魏良明表示,即便是做负极材料,现在业内更倾向于使用硅,因为一方面硅的理论容量并不比石墨烯低,另一方面是硅的价格相对石墨烯而言要低得多。
近年来,有一些企业宣称实现了量产,石墨烯价格甚至下降到每克3-5元,但据行业内人士的说法,现在宣称已经实现量产的石墨烯并非真正单层的石墨烯,而大多是晶格缺陷较高、多层堆叠的石墨微片产品,只能保持石墨烯部分特性。
7、市场上大量膨胀石墨、石墨微片鱼目混珠
而在我国之所以有众多的企业加入到生产石墨烯电池的大军中,其与主要是使用的是石墨烯粉体有很大的关系。目前在石墨烯产品的产业化生产方面,有两个重要的方向:一个是石墨烯膜,一个是石墨烯粉。石墨烯膜的工业化生产起点高、技术要求强,一般的企业难以涉足。但是对石墨烯粉而言,却有很大的操作空间。
因此,石墨烯粉体成为伪石墨稀概念和资本炒作的重灾区,除了严格意义上的石墨烯外,大量膨胀石墨、石墨微片在其中鱼目混珠。由于更薄且层数小于10个原子层 的石墨微片具有石墨烯的某些特性,因此添加到电池中,会改善电池的一些性能,不明就里的人就会以为这是石墨烯在发挥作用了。
就是按照中国石墨烯产业技术创新战略联盟的标准,只有达到10个原子层以下的石墨粉体,才能被称为石墨烯粉体。然而,概念是一回事,实际是另一回事。企业向原有材料中添 加石墨烯粉体,原子层数结构为5层还是10层,或者是更多层数的石墨微片,如果不是使用专业仪器,外人根本就不知道电池里面填的究竟是什么东西,企业添加 的粉体到底是不是石墨烯无人知晓。
其次,粉体中含有5-10层石墨粉体的比例是90%还是只有10%?其中杂质含量又是多少?什么是合格产 品?目前也连行业标准都没有,各企业只能凭良心生产。最后,在应用时,企业到底添加了多少石墨烯粉体用于改善性能?产品性能究竟提高了多少,是90%、 50%、还是5%?其中多少性能的提高是因为石墨烯?这些却都还是一个糊涂账。
由于目前没有国家标准,这让整个行业混乱不堪。一些地方政府迫切希望打造石墨烯产业,拉动投资,也对这个产业起到了推波助澜的作用。
小结:期待未来
鉴于石墨烯超优异的性能及巨大的应用前景,各国政府和企业都投入大量人力、物力、财力进行关于石 墨烯的研究。但也正是在这喧嚣与巨额投入下,石墨烯的研究也确实取得了很多不错的成果,石墨烯的价格已经在慢慢降低,较大尺寸、较高质量的石墨烯也逐渐研制成功,下游产业链也逐渐在尝试使用石墨烯。
从技术成熟度及需求急迫性而言,其应用于锂离子电池提高电池充放电效率、电池容量及电池稳 定性显然对汽车特别是电动汽车的发展具有决定性作用。电动汽车要成为主流汽车,石墨烯至关重要。如果将无人驾驶以及太阳能汽车也考虑在内,石墨烯无疑会在汽车领域拥有更广阔的应用空间。
当然,前景是广阔的,但现实是冷血的,由于制备工艺的不成熟以及下游产业链没有完全打开,到目前石墨烯依然没有规模化应用,而要改变这一现状可能还需要一段时间。相信随着研究的不断深入,在将来的某一天,石墨烯的奇点必会到来,那时众多行业将会发生翻天覆地的变革甚至会被颠覆。
评论
查看更多