电路功能与优势
图1所示电路监控系统中的电流,可在高达+500 V的正高共模直流电压下工作,且误差小于0.2%。负载电流通过一个电路外部的分流电阻。分流电阻值应适当选择,使得在最大负载电流时分流电压约为500 mV。
图1:高共模电压电流监控器(未显示所有连接和去耦)
与外部PNP晶体管配合使用时, AD8212 能在具有大于500 V的正高共模电压情况下,精确放大小差分输入电压。
电流隔离由四通道隔离器ADuM5402 提供。这不仅是为了提供保护,而且还可将下游电路与高共模电压隔离开来。除了隔离输出数据以外,数字隔离器ADuM5402还为电路提供+3.3 V隔离电源。
AD7171 的测量结果通过一个简单的双线SPI兼容型串行接口,以数字码形式提供。
这一器件组合实现了一款精确的正高压供电轨电流检测解决方案,具有器件数量少、低成本、低功耗的特点。
电路描述
该电路针对最大负载电流IMAX下500 mV的满量程分流电压而设计。因此,分流电阻值为RSHUNT = (500 mV)/(IMAX)。
AD8212工艺具有65 V的击穿电压限制。因此,共模电压必须保持在65 V以下。通过采用外部PNP BJT晶体管,共模电压范围可以扩展到500 V以上,具体取决于晶体管的击穿电压。
图2:AD8212采用外部PNP晶体管的高压工作模式
AD8212没有专用电源。相反,该器件实际上利用一个内部5 V串联调节器使自身“浮动”脱离500 V共模电压,从而创建出一个5 V电源,如图2所示。此调节器确保所有端子中的最大负端COM(引脚2)始终要比电源电压(V+)低5 V。
在此工作模式下,AD8212电路的电源电流(IBIAS) )完全基于电源电压范围和所选的RBIAS电阻值。例如,对于V+ = 500 V和RBIAS = 500 kΩ,
IBIAS = (500 V −5 V)/RBIAS = 990 μA。
在此高电压模式下, IBIAS应当介于200 μA和1 mA之间。这样可以确保偏置电路处于激活状态,从而让器件可以正常工作。
注意,500 kΩ偏置电阻(5 × R2)由五个单独的100 kΩ电阻构成。这是为了提供保护,以防电阻电压击穿。通过消除电阻串正下方的接地层,可以增加额外的击穿保护。
流经外部分流电阻的负载电流在AD8212的输入端产生电压。内部放大器A1通过促使晶体管Q1籍由电阻R1传导必要电流做出响应,以均衡放大器A1反相和同相输入端处的电位。
流过晶体管Q1发射极的电流(IOUT) 与输入电压(VSENSE) 成比例,因此也就与流过分流电阻(ILOAD) 的负载电流(RSHUNT)成比例。输出电流 (IOUT)通过外部电阻转换成电压,而外部电阻值取决于应用中所需的输入至输出增益。
AD8212的传递函数为:
IOUT = gm × VSENSE
VSENSE = ILOAD × RSHUNT
VOUT = IOUT × ROUT
VOUT = (VSENSE × ROUT)/1000 gm = 1000 μA/V
输入检测电压具有固定范围,即0 V至500 mV。输出电压范围可以根据ROUT值进行调整。当VSENSE发生1 mV变化时,即可在IOUT上产生1 mA变化,而当后者流过5 kΩ电阻时,又会在VOUT处产生1 mV变化。
在图1所示电路中,负载电阻为24.9 kΩ,因此增益为5。500 mV的满量程输入电压会产生2.5 V输出,这对应于AD7171 ADC的满量程输入范围。
AD8212输出设计用于驱动高阻抗节点。因此,如果与转换器接口,则建议对ROUT两端的输出电压进行缓冲,以保证AD8212的增益不受影响。
注意, ADR381 和AD7171的电源电压由四通道隔离器ADuM5402的隔离电源输出(+3.3 VISO)提供。
AD7171的基准电压由精密带隙基准电压源ADR381提供。ADR381的初始精度为±0.24%,典型温度系数为5 ppm/°C。
虽然AD7171 VDD和REFIN(+)都可以采用3.3 V电源,但使用独立的基准电压源可提供更高的精度。可选择2.5 V基准电压源来提供充足的裕量。
AD7171 ADC的输入电压在ADC的输出端转换为偏移二进制码。ADuM5402为DOUT数据输出、SCLK输入和 PDRST 输入提供隔离。虽然隔离器是可选器件,但建议使用该器件来保护下游数字电路,使其不受故障状况下的高共模电压影响。
图3中的曲线图显示,受测试的电路如何在整个输入电压范围(0 mV至500 mV)实现了不足0.2%的误差。另外还比较了LabVIEW记录的ADC输出代码与基于理想系统而计算的理想代码。
图3:输出和误差与分流电压的关系图
PCB布局考虑
在任何注重精度的电路中,必须仔细考虑电路板上的电源和接地回路布局。PCB应尽可能隔离数字部分和模拟部分。本PCB采用4层板堆叠而成,具有较大面积的接地层和电源层多边形。
常见变化
关于正电源的高端检测,目前有多种解决方案可用,包括使用检测放大器、差动放大器或二者某种组合的IC解决方案。
图4:正共模电压大于+65 V时的双向电流检测
图4显示了一种可选电路,需要针对大于+65 V的正共模电压进行双向电流检测时可以使用该电路。通过在该配置中实施另一个AD8212,可以分别测量电荷和负载电流。注意,VOUT1会随着ILOAD流过分流电阻而不断升高。VOUT2会随着ICHARGE流过分流电阻而不断升高。
电路评估与测试
警告!高电压。此电路可能包含致命电压。除非是接受过相关培训、懂得高压电路操作的专业人员,否则请勿操作、评估或测试此电路,或者进行电路板装配。加电之前,必须先熟悉该电路以及高压电路操作的所有必要注意事项。
本电路使用EVAL-CN0218-SDPZ电路板和EVAL-SDP-CB1Z系统演示平台(SDP)评估板。这两片板具有120引脚的对接连接器,可以快速完成设置并评估电路性能。EVAL-CN0218-SDPZ板包含要评估的电路,如本笔记所述。SDP评估板与CN0218评估软件一起使用,可从EVAL-CN0218-SDPZ电路板获取数据。
设备要求
带USB端口的Windows® XP、Windows Vista®(32位)或Windows® 7(32位)PC
EVAL-CN0218-SDPZ电路评估板
EVAL-SDP-CB1Z SDP评估板
CN0218评估软件
电源电压:+6 V或+6 V壁式电源适配器
最大负载电流下最大电压为500 mV的分流电阻
电子负载
开始使用
将CN0218评估软件光盘放进PC的光盘驱动器,加载评估软件。打开我的电脑摂,找到包含评估软件光盘的驱动器,打开Readme文件。按照Readme文件中的说明安装和使用评估软件。
功能框图
电路的功能框图参见本电路笔记的图1,电路原理图参见EVAL-CN0218-SDPZ-SCH.pdf文件。此文件位于CN0218设计支持包中
设置
EVAL-CN0218-SDPZ电路板上的120引脚连接器连接到EVAL-SDP-CB1Z (SDP)评估板上标有“CON A”的连接器。应使用尼龙五金配件,通过120引脚连接器两端的孔牢牢固定这两片板。
将一个分流电阻(RSHUNT
测试
为连接到EVAL-CN0218-SDPZ电路板的+6 V电源(或壁式电源适配器)通电。启动评估软件,并通过USB电缆将PC连接到SDP板上的微型USB连接器。
一旦USB通信建立,就可以使用SDP板来发送、接收、捕捉来自EVAL-CN0218-SDPZ板的串行数据。随着电子负载的逐级调整,可以记录不同负载电流值下的数据。
有关如何使用评估软件来捕捉数据的详细信息,请参阅CN0218评估软件Readme文件。
评论
查看更多