2022 年 5 月 18日,中国 – 意法半导体的 STPOWER MDmesh M9和DM9硅基N沟道超结多漏极功率MOSFET晶体管非常适用于设计数据中心服务器、5G基础设施、平板电视机的开关
2022-05-19 10:50:421844 MOSFET作为主要的开关功率器件之一,被大量应用于模块电源。了解MOSFET的损耗组成并对其分析,有利于优化MOSFET损耗,提高模块电源的功率;但是一味的减少MOSFET的损耗及其他方面的损耗
2023-04-18 09:22:021251 在高功率应用中,碳化硅(SiC)MOSFET与硅(Si)IGBT相比具有多项优势。其中包括更低的传导和开关损耗以及更好的高温性能。
2023-09-11 14:55:31347 意法半导体最先进的40V功率MOSFET可以完全满足EPS (电动助力转向系统)和EPB (电子驻车制动系统) 等汽车安全系统的机械、环境和电气要求。 这些机电系统必须符合汽车AEC Q101规范,具体而言,低压MOSFET必须耐受高温和高尖峰电流。
2019-08-09 07:28:08
开关电源控制器,专为具有电流模式控制的小型电源设备设计,PN8366集成超低待机功耗准谐振原边控制器及高雪崩能力智能功率MOSFET,骊微电子用于高性能、外围元器件精简的充电器、适配器和内置电源,最大限度
2020-04-09 14:21:30
的影响更明显。(3)降低米勒电压,也就是降低阈值开启电压同时提高跨导,也可以提高开关速度,降低开关损耗。但过低的阈值电压会使MOSFET容易受到干扰误导通,而跨导和工艺有关。
2017-03-06 15:19:01
过程中的开关损耗。开关损耗内容将分成二次分别讲述开通过程和开通损耗,以及关断过程和和关断损耗。功率MOSFET及驱动的等效电路图如图1所示,RG1为功率MOSFET外部串联的栅极电阻,RG2为功率
2017-02-24 15:05:54
功率半导体器件以功率金属氧化物半导体场效应晶体管(功率MOSFET,常简写为功率MOS)、绝缘栅双极晶体管(IGBT)以及功率集成电路(power IC,常简写为PIC)为主。
2020-04-07 09:00:54
,ZRL典型值为±1dps,这些功能适合各种应用,特别是在精确运动检测和提高相机性能方面。该传感器还支持意法半导体开发的使用浮点数学运算将计步误差率降低60%的增强版计步器算法,并集成一个能够识别公共汽车
2018-11-05 14:07:51
主CPU关闭时,可在低功耗时高能效地采集并存储数据。 STM32L4+的片上大容量存储器包括640KB的SRAM,可以辅助高速运算性能,最大限度提升图形处理性能。此外,该系列产品还有高达2MB的双区
2017-11-21 15:21:22
功率放大器以及商用和工业系统的功率放大器。意法半导体与远创达的合作协议将扩大意法半导体LDMOS产品的应用范围。协议内容保密,不对外披露。 相关新闻MACOM和意法半导体将硅上氮化镓推入主流射频市场
2018-02-28 11:44:56
新产品的集成功率级都采用意法半导体RDS(ON)仅为500mΩ的专有MOSFET,高能效和经济性兼备。STSPIN840的电桥输出可以单独使用或并联,这有助于降低多电机驱动应用的物料清单成本。高功能集度
2018-08-29 13:16:07
• 意法半导体嵌入式软件包集成Sigfox网络软件,适用于各种产品,按照物联网应用开发人员的需求专门设计 • 使用STM32微控制器、超低功耗射频收发器、安全单元、传感器和功率管理器件,加快
2018-03-12 17:17:45
▌峰会简介第五届意法半导体工业峰会即将启程,现我们敬邀您莅临现场,直击智能热点,共享前沿资讯,通过意法半导体核心技术,推动加快可持续发展计划,实现突破性创新~报名链接:https
2023-09-11 15:43:36
的硬件和(免费)注册中国,2018年2月9日 —— 横跨多重电子应用领域的全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)今天宣布,包括学生
2018-02-09 14:08:48
和精确度。 该主板具充足的运算能力,能够处理复杂的数据集,例如,意法半导体先进6轴惯性模块输出的OIS / EIS(光学或电子防抖)数据, 以及简单的传感器读数,例如,气压表、加速计或陀螺仪数据。 该主板
2018-05-22 11:20:41
有源米勒钳位选配,提升高速开关抗干扰能力中国,2018年8月3日——意法半导体的STGAP2S单路电气隔离栅极驱动器提供26V的最大栅极驱动输出电压,准许用户选择独立的导通/关断输出或内部有源米勒钳
2018-08-06 14:37:25
、ETSI 和 ARIB 规范。新IC电路元件是采用意法半导体的集成无源器件(IPD)技术制造在玻璃衬底上,这样设计可以最大限度地减少信号插入损耗,性能优于采用分立元件构建的电路。在同一芯片上集成所有
2023-02-13 17:58:36
中国,2018年4月10日 ——意法半导体的STLQ020低压差(LDO)稳压器可以缓解在静态电流、输出功率、动态响应和封装尺寸之间权衡取舍的难题,为设计人员带来更大的自由设计空间。集小尺寸、高性能
2018-04-10 15:13:05
横跨多重电子应用领域、全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM) 推出汽车级六轴惯性传感器ASM330LHH ,为先进的车载导航
2018-07-17 16:46:16
中国,2018年10月10日——意法半导体推出了STLINK-V3下一代STM8 和STM32微控制器代码烧写及调试探针,进一步改进代码烧写及调试灵活性,提高效率。STLINK-V3支持大容量存储
2018-10-11 13:53:03
`中国,2018年6月22日——意法半导体的VIPer11离线转换器内置800V耐雪崩MOSFET,可帮助设备制造商设计更耐用的辅助电源和电源适配器,其26Vdc漏极启动电压允许超宽的线路输入电压
2018-06-25 11:01:49
。在负载较低时,为最大限度地提高能效,STCH03进入准谐振模式(ZVS),通过检测变压器退磁来控制零电压开关操作。检测电路还提供电压前馈控制功能,以确保恒流调整的精确度。STCH03将运行电流维持在
2018-07-13 11:35:31
解决方案,点燃“物联网设备人机界面”革命中国,2018年7月12日——横跨多重电子应用领域、全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码
2018-07-13 15:52:39
STM32* 微控制器上开发先进的高能效电机驱动器的难度。此举为空调、家电、无人机、楼宇自动化、机床、医疗设备、电动车等产品设备工程师研发先进电机驱动带来更多机会,而且无需专门的研发经验。基于意法半导体上一代
2018-03-22 14:30:41
和RAM)。例如,对于内存来说太大的单个层可以分为两个步骤。之前的MLPerf Tiny结果显示,与标准CMSIS-NN分数相比,意法半导体的推理引擎(Arm的CMSIS-NN的优化版本)具有性能优势。STM32CubeAI开发云还将支持意法半导体即将推出的微控制器,包括内部开发的NPU,即STM32N6。
2023-02-14 11:55:49
中国,2018年8月1日——意法半导体的FDA803D 和FDA903D汽车级数字输入音频放大器功能丰富,有助于简化系统集成,最大限度提高车载信息服务及紧急呼叫设备和混动/电动汽车声学提示系统
2018-08-02 15:33:58
`中国,5月28日—— 横跨多重电子应用领域、全球领先的半导体供货商意法半导体( STMicroelectronics ,简称 ST ;纽约证券交易所代码: STM )发布 了2018 年可持续发展
2018-05-29 10:32:58
意法半导体的TSB712A 精密运算放大器能够在宽电压和温度范围内保持稳定的参数,为工业控制、汽车系统等众多应用带来经济且高端的信号调理性能。 电源电压范围宽达2.7V-36V或±1.35V至
2018-07-25 14:42:31
中国,2018年7月16日——意法半导体STEF01可编程电子熔断器集成低导通电阻RDS(ON) 的VIPower™MOSFET功率管,在8V到48V的宽输入电压范围内,能够维持高达4A的连续电流
2018-07-16 16:51:13
www.st.com/evalsp820。原贴地址 https://www.stmcu.com.cn/news/777相关新闻意法半导体高能效单片三相三路电流检测BLDC驱动器:延长便携设备和物联网产品
2018-06-11 15:16:38
共享一个外部钳位二极管的快速退磁功能。其他诊断功能包括两个用于指示负载开路和过载/热关断的公共开漏引脚,以及用于指示单个通道过载/热关断的四个输入/输出开漏引脚。作为意法半导体智能功率开关产品大家族
2018-06-04 10:37:44
。无论是在最大亮度还是调光模式,控制器均可确保电压转换和电流控制电路拥有很高的能效,最大限度地延长电池的使用寿命。此外,每个通道的电流匹配度非常精确,从而可确保背光亮度保持一致,进一步提高
2011-11-24 14:57:16
利用双电机无传感器磁场定向控制(FOC)和有源功率因素校正(PFC),实现空调电机控制提高能效和降低系统成本是促使现代电机控制技术发展的推动力量,这些技术广泛应用于各种风扇、泵机、压缩机或减速电机
2018-12-04 09:54:53
使用绝缘栅双极晶体管(IGBT)。但随着半导体技术的进步,碳化硅 (SiC) 金属氧化物半导体场效应晶体管 (MOSFET) 能够以比 IGBT 更高的频率进行开关,通过降低电阻和开关损耗来提高
2022-11-02 12:02:05
要有深入了解,才能有利于理解和分析相应的问题。 高压MOSFET原理与性能分析 在功率半导体器件中,MOSFET以高速、低开关损耗、低驱动损耗在各种功率变换,特别是高频功率变换中起着重要作用。在低压
2023-02-27 11:52:38
2a)可以减少桥损耗,采用交错式PFC(图2b)可以满足较高功率应用的要求,以提升PFC能效。此外,还可以利用IC技术减少开关损耗,并利用更优化的拓扑结构来减少EMI滤波器损耗。 采用安森美半导体
2011-12-13 10:46:35
随着现代微控制器和SoC变得越来越复杂,设计者面临着最大化能源效率,同时实现更高水平的集成。最大限度地提高能量在低功耗SoC市场中,多个功率域的使用被广泛采用。在
同时,为了解决更高级别的集成,许多
2023-08-02 06:34:14
员所需要的。飞兆半导体公司(Fairchild Semiconductor简称FAI)推出的FDMC8010 30V Power 33 MOSFET(尺寸3.3mm x 3.3mm 外形PQFN)此款
2012-04-28 10:21:32
电子应用领域的全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)于今日联合宣布,将在意法半导体的ST Telemaco3P STA1385车载信息
2018-11-05 14:09:44
电子、汽车和无线基站项目意法半导体获准使用MACOM的技术制造并提供硅上氮化镓射频率产品预计硅上氮化镓具有突破性的成本结构和功率密度将会实现4G/LTE和大规模MIMO 5G天线中国,2018年2月12日
2018-02-12 15:11:38
引言 如今,客户要求产品不但节能,还要体积更小,从而推动功率转换行业向前发展。交流/直流和直流/直流转换器拓扑的不断发展,改善了转换器效率。功率MOSFET是功率转换器的核心部件,是设计高能效产品
2018-12-07 10:21:41
的功率型分立器件针对软开关谐振和硬开关转换器进行了优化,可最大限度提高低功率和高功率应用的系统效率。基于氮化镓的最新产品具备更高的能源效率,并支持面向广泛的应用提供更紧凑的电源设计。
2023-09-07 06:49:47
Degauque表示:“意法半导体高射频性能的NFC方案最大限度地提高了工程师在新产品设计时的自由空间和灵活度。通过充分利用这一灵活性, NFC在Alcatel 3V智能手机上的集成过程被有效简化
2018-06-11 15:22:25
智能电表芯片单片集成开发智能电表所需的全部重要功能,能够满足多个智能电网市场的需求。这些电表连接消费者和供电公司,提供实时电能计量和用电数据分析功能。意法半导体亚太区功率分立器件和Sub Analog
2018-03-08 10:17:35
ST意法半导体意法半导体拥有48,000名半导体技术的创造者和创新者,掌握半导体供应链和先进的制造设备。作为一家半导体垂直整合制造商(IDM),意法半导体与二十多万家客户、成千上万名合作伙伴一起研发
2022-12-12 10:02:34
MOSFET作为主要的开关功率器件之一,被大量应用于模块电源。了解MOSFET的损耗组成并对其分析,有利于优化MOSFET损耗,提高模块电源的功率;但是一味的减少MOSFET的损耗及其他方面的损耗
2019-09-25 07:00:00
就可通过降低RDS(ON)和栅极电荷(Qg),最大限度地减少传导损耗和提高开关性能。这样,MOSFET就能应对开关过程中的高速电压瞬变(dv/dt)和电流瞬变(di/dt),甚至可在更高的开关频率下可靠地工作。
2019-09-04 07:00:00
直接影响转换器的体积、功率密度和成本。 然而,所使用的半导体开关远非理想,并且由于开关转换期间电压和电流之间的重叠而存在开关损耗。这些损耗对转换器工作频率造成了实际限制。谐振拓扑可以通过插入额外的电抗
2023-02-21 16:01:16
什么是堆叠式共源共栅?低阻抗功率半导体开关有哪些关键特性?低阻抗功率半导体开关有哪些应用优势?
2021-06-26 06:14:32
最大限度地降低了动态损耗,提高了总体能效,特别是在从数百kHz至MHz不等的较高工作频率下。为了实现高压开关的零电压开关(ZVS)工作,这三种拓扑都利用变压器中的循环电流来进行开关QOSS放电。显然
2022-04-12 11:07:51
最大限度地降低了动态损耗,提高了总体能效,特别是在从数百kHz至MHz不等的较高工作频率下。为了实现高压开关的零电压开关(ZVS)工作,这三种拓扑都利用变压器中的循环电流来进行开关QOSS放电。显然
2022-06-14 10:14:18
物联网( IoT )市场的成长需求。 光宝的新模块集成了来自横跨多重电子应用领域、全球领先半导体供货商意法半导体(STMicroelectronics,简称 ST ;纽约证券交易所代码
2018-07-13 11:59:12
SiC-MOSFET的量产。SiC功率模块已经采用了这种沟槽结构的MOSFET,使开关损耗在以往SiC功率模块的基础上进一步得以降低。右图是基于技术规格书的规格值,对1200V/180A的IGBT模块、采用第二代
2018-11-27 16:37:30
所在各类半导体功率器件中,未来增长强劲的产品将是 MOSFET 与 IGBT 模块。目前,全球功率半导体市场仍由欧美日企业主导,其中英飞凌以 19%的市占率占据绝对领先地位。全球功率半导体前十名供应商
2022-11-11 11:50:23
频性能的同时不会影响电池性能。此外,ST21NFCD的高集成度可最大限度地减小电路尺寸,从而节省材料成本。“出门问问和意法半导体有着长期稳定的合作关系,双方曾合作开发多款适用于出门问问智能手表的关键
2018-07-13 13:06:48
描述 此项 25W 的设计在反激式拓扑中使用 UCC28740 来最大限度降低空载待机功耗,并使用 UCC24636同步整流控制器来最大限度减少功率 MOSFET 体二极管传导时间。此设计还使用来
2022-09-23 06:11:58
条件下实现高能效,是达到这个市场需求的关键要素,同时也是半导体厂商研发新技术的动力。 因为过去几年技术改良取得较大进步,意法半导体最新的功率MOSFET技术可以成功地替代变频电机控制器的IGBT开关
2018-11-20 10:52:44
在数字无线通信产品测试中最大限度地降低电源瞬态电压......
2019-08-19 07:42:24
开关频率的PFC• SLLIMM* IPM逆变器电源• MDmesh M2超结功率MOSFET• 意法半导体Turbo 2超快高压整流器• VIPER31辅助电源
2023-09-08 06:59:33
规模地进军太阳能街灯应用打开了大门。 采用最大峰值功率追踪技术提升太阳能板能效 对于太阳能街灯而言,提高太阳能电池板的光电转换能效(目前仅为约30%)非常重要。太阳能电池板的电压-电流(V-I)特性曲线
2009-03-24 12:03:30
最大限度提高Σ-Δ ADC驱动器的性能
2021-01-06 07:05:10
如何最大限度的去实现LTE潜力?
2021-05-25 06:12:07
可能会使变压器收缩,因为所需的磁性材料更少。此外,随着频率的增加,变压器铁芯的磁性材料最终可以改变为更高效或更便宜的材料。 为了最大限度地提高高功率 DC/DC 转换器的开关频率而不降低转换器效率
2023-02-20 15:32:06
在本文中,我们将解释针对不同的应用和工作条件仔细选择IGBT变体如何提高整体系统效率。IGBT模块中的损耗大致可分为两类:传导开关众所周知,对于特定电压下的任何给定过程,降低传导损耗的努力将导致
2023-02-27 09:54:52
如何用PQFN封装技术提高能效和功率密度?
2021-04-25 07:40:14
在电源设计中,为提高能效,通常采用同步整流,即用MOSFET取代二极管整流器,从而降低整流器两端压降和导通损耗,提供更高的电流能力,实现更高的系统能效。然而,传统的同步整流在用于LLC谐振转换器
2018-12-03 11:07:15
最新的电源模块,结合高能效与强固的物理和电气设计,用于要求严苛的工业应用。展出的电动工具演示将向观众演示安森美半导体的电源模块如何帮助实现紧凑、高能效的设计,以支持较长的电池使用寿命。功率模块是电源转换
2018-10-30 09:06:50
硕果。尧远通信科技的客户充分利用CLOE追踪器整体方案的优势,针对不同用途的物联网追踪器设计高能效的LTE。”意法半导体信息娱乐事业部总监Antonio Radaelli表示:“CLOE是我们与赛肯通信
2018-02-28 11:41:49
布局电源板以最大限度地降低EMI:第3部分
2019-08-16 06:13:31
布局电源板以最大限度地降低EMI:第1部分
2019-09-05 15:36:07
布局电源板以最大限度地降低EMI:第2部分
2019-09-06 08:49:33
“意法半导体,与智能同在”中国上海,2018年6月26日——横跨多重电子应用领域、全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)将参展
2018-06-28 10:59:23
的功率型分立器件针对软开关谐振和硬开关转换器进行了优化,可最大限度提高低功率和高功率应用的系统效率。基于氮化镓的最新产品具备更高的能源效率,并支持面向广泛的应用提供更紧凑的电源设计。意法半导体的数字电源解决方案可以使用专用的评估板、参考设计、技术文档和eDesignSuite软件配置器和设计工具来实现
2023-09-06 07:44:16
碳化硅(SiC) MOSFET、超级结MOSFET、IGBT和汽车功率模块(APM)等广泛的产品阵容乃至完整的系统方案,以专知和经验支持设计人员优化性能,加快开发周期。本文将主要介绍针对主流功率等级的高能效OBC方案。
2020-11-23 11:10:00
高压MOSFET原理与性能分析在功率半导体器件中,MOSFET以高速、低开关损耗、低驱动损耗在各种功率变换,特别是高频功率变换中起着重要作用。在低压领域,MOSFET没有竞 争对手,但随着MOS的耐压
2020-03-31 17:08:29
大家好,首次发帖。本人为意法半导体工程师,因为下面一个molding工程师要辞职,继续补充新鲜血液。要求:一.熟悉molding制程,需特别熟悉molding compound的性能为佳。二.2年
2012-02-15 11:42:53
意法半导体拥有最先进的平面工艺,并且会随着G4不断改进:• 导通电阻约比G3低15%• 工作频率接近1 MHz• 成熟且稳健的工艺• 吞吐量、设计简单性、可靠性、经验…• 适用于汽车的高生产率
2023-09-08 06:33:00
的特性,还因为器件对IGBT的价格越来越有竞争力,制造商在系统层面引入了长期投资策略,以确保供应。 STPOWER产品组合 毫无疑问,进入SiC供应商榜首的制造商之一是意法半导体。意法半导体在过去几年
2023-02-24 15:03:59
散热器的D2PAK和SuperSO8 (5毫米x 6毫米)等贴片封装,从而大幅简化热管理。 因此,可以提高开关电源的功率密度,同时降低系统成本。 继去年发布展示有巨大优势的全新30V硅技术产品之后
2018-12-06 09:46:29
意法半导体官方的库怎么搞?求解答
2021-12-15 07:31:43
新技术就可通过降低RDS(ON)和栅极电荷(Qg),最大限度地减少传导损耗和提高开关性能。这样,MOSFET就能应对开关过程中的高速电压瞬变(dv/dt)和电流瞬变(di/dt),甚至可在更高的开关频率下
2011-08-17 14:18:59
ADCSTM32H725ZGT6,V 18664341585,ST/意法半导体,Arm®Cortex®-M7 32位550 MHz MCU,最高1 MB闪存,564
2023-10-16 15:52:51
飞兆半导体公司(Fairchild Semiconductor)开发出N沟道PowerTrench MOSFET器件FDMS86500L,该器件经专门设计以最大限度地减小传导损耗和开关节点振铃,并提升DC-DC转换器的整体效率
2011-05-18 09:09:07704 意法半导体推出打破高压功率MOSFET晶体管世界记录的MDmesh V功率MOSFET晶体管,MDmesh V系列已是市场上性能最高的功率MOSFET晶体管,拥有最低的单位面积通态电阻
2011-12-27 17:29:101277
意法半导体新款的MDmesh™ MOSFET内置快速恢复二极管
提升高能效转换器的功率密度
2017-09-21 16:31:255915 这款 7.6mΩ,60V TO-220 NexFET™功率 MOSFET被设计成在功率转换应用中最大限度地降低功率损耗。
2019-04-25 08:00:001 电子发烧友网站提供《最大限度地提高高压转换器的功率密度.doc》资料免费下载
2023-12-06 14:39:00308 灯,还是适用于电源适配器和平板显示器的电源。 意法半导体800V STPOWER MDmesh K6系列,为这种超级结晶体管技术树立了高性能和易用性兼备的标杆。MDmesh K6 的RDS
2021-10-28 10:41:251491 意法半导体的STPOWER MDmesh M9和DM9硅基N沟道超结多漏极功率MOSFET晶体管非常适用于设计数据中心服务器、5G基础设施、平板电视机的开关式电源 (SMPS)。
2022-05-19 14:41:471214 SiC FET 速度极快,边缘速率为 50 V/ns 或更高,这对于最大限度地减少开关损耗非常有用,但由此产生的 di/dt 可能达到每纳秒数安培。这会通过封装和电路电感产生高电平的电压过冲和随后
2022-08-04 09:30:05729 如何最大限度减少线缆设计中的串扰
2022-11-07 08:07:261 如何最大限度地提高电子设备中能量收集的效率
2022-12-30 09:40:14614 电子发烧友网站提供《最大限度提高∑-∆ ADC驱动器的性能.pdf》资料免费下载
2023-11-22 09:19:340
评论
查看更多