模块B的电路图 - 简单的锂电池保护IC测试电路的设计

来源:本站整理 作者:灰色天空2012年03月30日 14:58
[导读] 图3 模块B的电路图 在测试电路的设计中,对电阻的选择要慎重。在模块A、B、C中由于有可变电位器的存在,如果其他电阻选择不适当容易造成电路的烧毁,
图3 模块B的电路图

  在测试电路的设计中,对电阻的选择要慎重。在模块A、B、C中由于有可变电位器的存在,如果其他电阻选择不适当容易造成电路的烧毁,尤其是模块A和B中的可变电位器的选择对测试各种电压的精度影响很大。本电路中两个可变电位器都是1K/10圈的,精度较高。模块C中的MOSFET的选择要注意其工作电流范围,在测试需要用到的电流只有两个级别,一个是零点几个微安,一个是几十微安,因此一般要求能提供微安级以下的电流。另外,电源的稳定度对整个IC测试参数的影响很大,因此,在测试时尽量使用稳定性好的电源。

  本设计的特点

  本设计有以下三个特点。

  ● 在测试IC过充、过放和过流的延迟时利用开关将电阻短路或开路来实现电路电源的突变,并且利用示波器同时抓电源和OC、OD跳变波形图来测量延迟时间。

  ● 为了实现测试OC、OD高、低电平时向引脚吸、灌电流,本电路用MOSFET做了两个简单的微电流源,选用的MOSFET型号为TN0201T,利用栅级电压控制漏、源级电流,以漏、源级电流为电流源,精度可以达到0.1μA,基本可以满足测试的需要。

  ● 测试过流保护电压时,即测试使OD引脚从高电平跳变为低电平的CS引脚电压。短流保护电压远高于过流保护电压,当电压达到过流保护电压时电路已经发生跳变,OD输出一直为低电平,因此常规方法无法测试出短流保护电压,于是,本文采用了一种间接的近似测试方法。IC对过电流保护的延迟时间大概为几个到十几个毫秒,而短流延迟时间则大概为十几个微秒,因此可以根据过流延迟时间与短流延迟时间的不同来近似测试短流保护电压。此参数使用专用的锂电池保护板测试仪也无法测出。

  本测试电路也存在一些不足。一是对IC测试的精度与电源稳定度、电表精度有关,其中,对各种电压测试的精度还与可变电位器的精度有关;二是短流保护电压测得的是近似值。

  总结

  虽然目前市场上有很多锂电池保护板测试仪,但价格昂贵,并且测试参数固定,不能满足实际测试的需要。在实际的应用中,客户最注重的锂电池保护IC的几个主要参数为:过充、过放和过流保护电压、静态工作电流和断电电流、过充、过放和过流保护延迟,以及OD、OC引脚的输出高、低电平。本文提供的测试方法可以很精确地测出上述参数,已经超出了锂电池保护板测试仪所能测试的参数。因此,在一些对锂电池保护IC参数要求很全面或条件比较受限制的场合,本文提供的测试电路和测试方法是一种较好的选择。

  上述测试电路和测试方法已经投入使用,现已成功测试千余片锂电池保护IC.从测试结果来看,除了短流保护电压是近似测试以外,其余参数测试都与专用的测试仪器测量的结果非常吻合;从客户反映情况来看,该测试电路测出的参数准确,能满足客户需要。由于本测试电路没有封装(加外壳),可以根据客户的需要增加适当电路测试出更多参数(如本文中提到的测试MOSFET漏电流大小)。

上一页12

本文导航

相关阅读

发表评论
技术交流、积极发言! 发表评请遵守相关规定。

0 条评论

推荐阅读

每月人物

依托AI平台,涂鸦智能开启全屋智能2.0时代!

依托AI平台,涂鸦智能开启全屋智能2.0时代!
随着物联网技术的突飞猛进,生活中越来越多的家庭设备将会联上网络,变得“智慧”起来,智慧家庭的概念成了这几年媒体、企业、用户关注的焦点,而...

发力IoT边缘智能服务,研华以平台服务与边缘智能计算打开物联网应用之门

发力IoT边缘智能服务,研华以平台服务与边缘智能计算打开物联网
研华IoT嵌入式平台事业群总经理许杰弘表示,工业物联网 2009年就开始提出,至今缺乏临门一脚,现在是打开大门的时候了。研华WISE-PaaS物智联软件平台和...

每周排行

  • 型 号
  • 产品描述