电缆的“ 电长” 足够, 能满足2·tp≥tr/5,其中tp是信号沿电缆单向传输的时间,tr是来自指定驱动器 的信号上升时间(10%-90%;请参考后面根据速度因子计算的信号传输时间)。如果电缆的“电长”不够,那么在调整终端(Rt)值时就可以更加灵活。这是选用慢速驱动器来满足应用要求的另一个理由。
*敏感度: *如果没有任何端接,SN75HVD12DR的接收器输入阻抗(单端)估计在109kΩ左右(基于最大输 入电流指标和引脚上的12V电压)。这么高的输入阻抗很容易受到PCB或电缆内邻近信号的串扰(如果屏蔽层内的电缆超过一对)。通过并联端接电阻可以降低这个阻抗值,最大程度地减小串扰,但代价是功耗会增大。建议做适当的折衷,永远不要放弃“免费的”抗噪声性能,一定要包含一定数值的终端。
优化端接电阻
需要回答的第一个问题是: 电缆的“电长”够吗?然后我们就能确定是否需要将电阻Rt与电缆阻抗匹配。回答这个问题可以从上面的等式2·tp≥tr/5开始。
加入前面驱动器的上升时间可以得到2·tp≥100ns/5,这样就得到了最大10ns的信号传输时间tp。这意味着从驱动器到对端电缆末端所需时间不到10ns(在到达第一个端接电阻之前)。接下来根据电缆电介质(及其速度因子)计算如何将这个要求转换为电缆长度。速度因子是信号沿着导体/电介质传播的速度与光在真空中传播速度之比。
VF(速度因子)=1/√εr (εr=相对介电常数或介电常数;例如,聚乙稀,εr=2.25)
因此速度=c·VF或c/√εr
例子:百通公司规定#9841电缆的速度因子为66%(绝缘体是聚乙稀,由上述公式计算得到66.6%)。如果没有规定VF,可以查找介电材料,然后用上述公式计算。
先计算电缆的最大长度(使用上面的100ns驱动器和10ns最大tp),然后找出与电缆阻抗匹配的端接电阻:
低功耗考虑
在这个例子中,长度小于1.98m(比如嵌入式应用机箱)的电缆不需要与之相配的端接电阻。那么如何选择Rt呢?可以不使用。然而如前所述,阻值较低的电阻可以减小敏感度。499Ω是一个好的起始值。对于5V信号,当电阻从120Ω变为499Ω时,每个电阻的静态功耗将从208mW下降到50mW。与无端接情况相比,这种做法有助于降低功耗和敏感度,从而实现鲁棒的通信链路。
对于非电池驱动的应用,我们为什么还要关心功耗呢?SMT元件在设计中已经变得非常小。一个0603 电阻的额定功率是100mW,若降额因数为50%,留给我们用的功率就只有50mW。499Ω的0603电阻满足要求,而208mW的原始设计需要1210尺寸的电阻。更高阻值的电阻有助于减小设计尺寸, 并使链路更加鲁棒。3.3V/499Ω信号则允许使用0402的端接电阻。
低功耗也意味着3.3V或5V电压轨可以不用电荷泵稳压器,这样可以减少器件数量,从而降低总成本。举例来说,凌力尔特公司的LTC3255可以采用4-48V直流输入,但输出限制为50mA。
管理共模电压
虽然RS-485是一种差分网络,但要想正确工作,必须满足有限共模(CM)电压限制要求。这意味着如果它们彼此呈悬浮态,则从一个节点到另一个节点需要一条地线。共模电压可能来自数字信号(使用二极管/电容),但一般来说它不抗噪。为了控制从一个模块到另一个模块的噪声,可以在地线上串联一个电 感。这样不仅可以通过任一根数据线控制直流共模电压,还能最大限度地减小射频回流。通常1μH的电感就可以提供很好的保护,因为它的阻抗在200MHz频率时超过1kΩ,但又不会因太高而干扰1Mbps或以下的通信。也可以采用共模扼流圈来提供额外的射频保护。
屏蔽
控制电磁干扰并不是说所有接地都悬浮于大地之上。一般来说,屏蔽层(如果用的话)的一端会连到末端的信号地或具有地线的节点,而屏蔽层的另一端则处于悬浮状态。在有可能发生严重磁性干扰的情况下,可能要求将屏蔽层的两端都接地。当电缆长度超过10m时,远端的屏蔽接地将被转换为“软地”(使用电容),以便通过屏蔽层(连接远程地)最大限度地减小低频干扰。使用电压源和寄生电容的噪声模型连接在相对地、导体和屏蔽层之间,这是一种明智的做法。图2中为基本的屏蔽构建了噪声模型。
图2:基本屏蔽结构的噪声建模
总结
RS-485实现了能够对抗电磁干扰的简单网络,但在应用中必须理解各种选项,并运用合理的工程原理。在众多选项中, 不要简单地选用自己见过或用过的器件。市场上不断推出新器件,应综合考虑传输长度、器件速度、功耗要求以及将使用的电缆类型再做出选择。正确的选择有助于设计的最后成功。
评论
查看更多