业者还必须根据图像内容的性质来挑选GDC。若内容属于静态,而且能预先判断,像是Spirite引擎这类低成本GDC就足堪重任。预先着色的位元图可储存在Sprint GDC的外部快闪记忆体。这类GDC非常适合用来处理不同色彩格式(包括使用色彩查找表或把实际像素值储存在画面缓冲区),而且还能处理透明与Alpha-blending的作业。运用资源耗用较少的压缩法,像是RLD(运行长度解码器),可大幅降低预先着色绘图的储存需求,进而降低成本。
其他需要动态图像的应用,像是地图或随机动画等,其所需内容都是当场立即决定,这些应用需要一个具备全功能管线的GDC,可透过贴图(纹理贴图)2D或3D来着色模型。像是硬体光源与云雾等,也可发挥这类功能的效益。对于较复杂的作业而言,内含着色器的图像引擎可带来更高弹性。
利用功能完备且具弹性的显示控制器,不仅能简化图像建置的工作,还能支援更好的图像功能,明确的说,图像开发远比控制器功能来得简单,像是弹性图层法以及支援多图层与Alpha-blending,还有各种色彩深度。
1.4 2D或3D图像
运用3D绘图对于GDC的效能与功能需求会有显着影响,例如,3D应用需要的顶点处理性能远高于2D应用,再加上像是贴图与Mipmap贴图等功能所需的视野校正,这些都是3D图像需要的功能(Mipmap是主要贴图的优化与调整尺寸版本,这种贴图和主要贴图储存在同一处)。它们让系统不必立即调整主要贴图的尺寸,对于效能提升有明显帮助。
在3D图像中光是加入?轴座标,就会大幅增加处理需求。相较之下,2D绘图着色的过程则简单许多,若内容属于静态,还能预先着色,就如同本文先前所讨论,在2D或3D动态内容方面,需要用到一个全管线化的图像引擎。
1.5 显示屏解析度
因为尺寸较大,解析度较高的显示屏必须处理更多像素,因此采用较大显示屏的应用就需要更快,更强大的GDC。航空与医疗方面的应用,通常在其低阶机种需要640 × 480像素的显示屏,而在高阶机种中就需要1280 × 1024像素解析度的显示屏。在汽车市场,低阶仪表板与中控台的显示屏尺寸通常为480X272像素,中阶机种为800X480,而高阶机种则为1280x480或更高像素。
1.6 显示屏数量
不论是增加单一显示屏的解析度,或是增加显示屏数量,其所涉及到的像素数量都会以倍数增加,并需提高GDC的处理需求。虽然可以运用多个GDC来应付需求,但也有某些GDC内含的显示屏控制器能透过单一控制器来支援多个显示屏。这些GDC能多工处理视讯输出资讯,其运用两倍的显示屏或像素时脉频率的速率,就像是处理一个显示屏一样,不过这两个显示屏必须拥有相同的时序属性与显示屏解析度。这类GDC对于汽车仪表板相当实用,因为仪表板通常有两个相同解析度的显示屏。
另一方面,有些GDC整合了超过一个显示屏控制器,能驱动多个不同时序与解析度的显示屏。这类控制器的成本会低于两个独立式GDC,设计工作也较简化。这其中一个典型例子,就是车用抬头显示器(HUD),HUD在仪表板上的显示屏解析度就低于主显示屏,而也有一种汽车应用是运用单一GDC来控制仪表板与中控台显示屏。
用户评论
共 0 条评论