反电动势是指有反抗电流发生改变的趋势而产生电动势,其本质上属于感应电动势。反电动势一般出现在电磁线圈中,如继电器线圈、电磁阀、接触器线圈、电动机、电感等。
通常情况下,只要存在电能与磁能转化的具有感性负载的电气设备中,在通/断电的瞬间,均会有反电动势,但在断电的瞬间反电动势与断开电流的大小成正比,电流很大时,电流的改变量很大,时间很短,磁通量的变化率很大,反电动势也会很高。反电动势有许多危害,控制不好,会损坏电气元件。
什么叫反电动势
以常见的直流电磁继电器为例加以说明。
电磁继电器的驱动机构为电磁铁,由铁芯及缠绕在铁芯上的线圈组成,其电气特性与电感完全一样,能够抑制线圈中电流的变化。
通电时,电能转化为磁能,电磁铁产生恒定的磁场,继电器动作。
断电时,电能不再供应,电磁铁线圈失电,电流迅速下降,磁场失去能量来源,磁场逐渐消失,此时磁场由恒定状态变为变化状态。
根据电磁定律,当磁场变化时,附近的导体会产生感应电动势,其方向符合法拉弟定律和愣次定律,与原先加在线圈两端的电压正好相反。这个电压就是反电动势。
电机反电动势
根据电磁定律,当磁场变化时,附近的导体会产生感应电动势,其方向符合法拉第定律和楞次定律,与原先加在线圈两端的电压正好相反,这个电压就是反电动势。电动机的转子转动切割磁力线产生一个感应电势,其方向与外加电压相反,故称为电机“反电动势”。
电路中存在多个电源时可能出现反电动势。比如同一导轨回路上的两根金属棒切割磁场的速度不等,有可能出现反电动势;动生电动势和感生电动势同时存在时可能出现反电动势。对线圈而言,其中的通电电流发生变化时就会在线圈的两端产生反电动势。比如LC振荡电路中电感线圈两端电压的变化与反电动势紧密联系;电动机线圈在转动时,反电动势也伴随产生了。
电动机的原理初中就能理解,是将电能转化为机械能的装置,通电的线圈在磁场里受到磁场对它的安培力的作用,使得线圈绕轴旋转。安培力是线圈转动的动力来源。如果我们只看到安培力的动力作用,电动机的线圈会不断地加速,这显然是不可能的,因为每个电动机都有一个最大的转速。这个最大的转速是如何形成的呢?
通电瞬间线圈几乎不动而电流最大,安培力产生的转动力矩远大于阻力矩,线圈开始转动。线圈转动时它就开始切割磁感线,在线圈中产生一个“反向电动势E反”,与加载在线圈外部的电势差U(外部电源提供)相反,起减小电流的作用。开始时刻反向电动势很小,电流很大,安培力的转动力矩较大,转速逐渐加大。随着转速的加大,反向电动势增大,线圈中的电流也就减小了,安培力的转动力矩减小到与阻力矩抗衡时就是电动机的最大速度的时候。
怎样克服反电动势和利用反电动势
1、电机反电动势决定因素
1) 转子角速度
2) 转子磁场产生的磁场
3) 定子绕组的匝数当电机设计完毕,转子磁场与定子绕组的匝数都是确定的。因此位移决定反电动势的因数是转子角速度,或者说是转子转速,随着转子速度的增加,反电动势也随之增加。
2、克服反电动势
通常情况下,只要存在电能与磁能转化的电气设备中,在断电的瞬间,均会有反电动势,反电动势有许多危害,控制不好,会损坏电气元件。
克服反电动势最简单有效的方法,是在线圈两端反向并联一支二极管,当产生反电动势时,电流通过二极管释放,从而保护控制元件。
这是从大禹治水的方法中学到的,对于洪水,要疏导,让它流入大海,而不是堵,堵是堵不住的。采用上述方法以后,磁能转化为电能,电能又全部转化为热能散发掉了。
3、利用反电动势
反电动势也是有很多用处的,某些情况下是可以有效利用起来的,下面通过介绍延时继电器工作原理介绍反电动势的有效利用。
图示:延时继电器构成原理图
图示是生产中常用的一种延时继电器的示意图。铁芯上由两个线圈A和B。线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合电路。在拉开开关S的时候,弹簧K并不能立即将衔铁D拉起,从而使触头C(连接工作电路)立即离开,过一段时间后触头C才能离开;延时继电器就是这样得名的。
拉开开关S时使线圈A中电流变小并消失时,铁芯中的磁通量发生变化(减小),从而在线圈B中激起感应电流,根据楞次定律,感应电流的磁场要阻碍原磁场的减小,这样,就使铁芯中磁场减弱得慢些,因此弹簧K不能立即将衔铁拉起。
电动机反电动势计算公式
主磁通在定子绕组中产生的自感电动势称为反电动势,用E1表示,其有效值的计算如下式:
E1=4.44*KE*FN*NL*ф
其中:KE----为比例常数;
FN----为定子电流的频率;
NL----为每相定子绕组的匝数;
ф-----为主磁通的振幅值。
评论
查看更多