您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子百科>半导体技术>半导体器件>

PN结可以有什么用途呢?

2019年09月04日 09:35 lq 作者: 用户评论(0

PN结在电子工业中应用极其广泛,几乎所有的电路中都能找到它的身影,PN结原理是电子学重要的理论基础之一。本文着重从PN结内部结构入手,深入浅出的分析自由电子和空穴的两种运动:扩散和漂移,介绍了什么是本征半导体、P型半导体和N型半导体,分析了PN结内部空间电荷区、内电场的形成。当加正向偏压时,载流子如何运动,加反向偏压时如何运动,从而说明PN结具有单向导电性,同时还介绍了其它一些性质,如随温度变化的负阻性,随控制电压变化的变容性,受击穿电压限制的稳压性等。

PN结可以有什么用途呢?

PN结可以有什么用途呢?

PN结应用编辑根据PN结的材料、掺杂分布、几何结构和偏置条件的不同,利用其基本特性可以制造多种功能的晶体二极管

PN结电容的大小对二极管的工作有 PN结电容分为两部分,势垒电容和扩散电容。 PN结交界处存在势垒区。结两端电压变化引起积累在此区域的电荷数量的改变,从而显现电容效应。 当所加的正向电压升高时,多子(N区的电子、P区的空穴)进入耗尽区,相当于对电容充电。

当正向电压减小时,又会有电子、空穴从耗尽区分别流入N区、P 区,相当于电容放电。加反向电压升高时,一方面会使耗尽区变宽,会使P区的空穴进一步远离耗尽区,也相当于对电容的放电。加反向电压减少时,就是P区的空穴、N区的电子向耗尽区流,使耗尽区变窄,相当于充电。

PN结电容算法与平板电容相似,只是宽度会随电压变化。 下面再看扩散电容。 PN结势垒电容主要研究的是多子,是由多子数量的变化引起电容的变化。而扩散电容研究的是少子。

在PN结反向偏置时,少子数量很少,电容效应很少,也就可以不考虑了。在正向偏置时,P区中的电子,N区中的空穴,会伴着远离势垒区,数量逐渐减少。即离结近处,少子数量多,离结远处,少子的数量少,有一定的浓度梯度。

正向电压增加时,N区将有更多的电子扩散到P区,也就是P区中的少子----电子浓度、浓度梯度增加。同理,正向电压增加时,N区中的少子---空穴的浓度、浓度梯度也要增加。相反,正向电压降低时,少子浓度就要减少。

从而表现了电容的特性。 PN结反向偏置时电阻大,电容小,主要为势垒电容。正向偏置时,电容大,取决于扩散电容,电阻小。 频率越高,电容效应越显著。 在集成电路中,一般利用PN结的势垒电容,即让PN结反偏,只是改变电压的大小,而不改变极性。

变容二极管 变容二极管是根据普通二极管内部 “PN结” 的结电容能随外加反向电压的变化而变化这一 原理专门设计出来的一种特殊二极管。 变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高 频信号上,并发射出去。

在工作状态,变容二极管调制电压一般加到负极上,使变容二极管 的内部结电容容量随调制电压的变化而变化。 变容二极管发生故障,主要表现为漏电或性能变差: (1)发生漏电现象时,高频调制电路将不工作或调制性能变差。

(2)变容性能变差时,高频调制电路的工作不稳定,使调制后的高频信号发送到对方被对 方接收后产生失真。 出现上述情况之一时,就应该更换同型号的变容二极管。 在一定条件下,PN结显现出充放电的电容效应。

不同的工作情况下的电容效应,分别用势垒电容和扩散电容予以描述。 势垒电容CB 势垒电容CB描述了PN结势垒区空间电荷随电压变化而产生的电容效应。PN结的空间电荷随外加电压的变化而变化,当外加电压升高时,N区的电子和P区空穴进入耗尽区,相当于电子和空穴分别向CB“充电”,如图(a)所示。

当外加电压降低时,又有电子和空穴离开耗尽区,好像电子和空穴从CB放电,如图(b)所示。CB是非线性电容,电路上CB与结电阻并联。在PN结反偏时结电阻很大,CB的作用不能忽视,特别是在高频时,它对电路有较大的影响。

非常好我支持^.^

(55) 73.3%

不好我反对

(20) 26.7%

( 发表人:李倩 )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!