读卡头灵敏度 - 极具成本效益的磁卡读卡器设计
读卡头灵敏度:读卡头灵敏度取决于线圈匝数以及读卡头与磁条之间的间距。
由于所有这些参数的影响,信号幅度可能在几百个uV至几十个mV之间变化。这个范围可以用放大器进行补偿。但不能用固定增益放大器。当划卡速度很高,卡的质量又很好时,放大器输出可以饱和到电源轨电压。而当信号饱和时,用两个连续峰值之间的时间差代表的信息将丢失。因此如实地放大传感器信号、不至于使波形发生饱和或改变很重要。这就要求使用增益可配置的放大器,以便我们随时调整增益。要做到这一点,系统必须能够检测信号变弱的时刻。这可以用跟踪传感器信号的ADC寻找近似的信号峰值来实现。
图6显示了一个完整的系统。最好将放大电路做成两级,用ADC接收第一级电路的输出。这样就无需高分辨率ADC,8位ADC就足以满足这种应用需求。第一级可以是固定增益的放大器,也可以是可变增益放大器。第二级是可变增益放大器。CPU读取ADC结果,并通过调整增益使第二级放大器的信号输出达到最佳。第二级放大器的输出送到峰值检测器/磁滞比较器电路进行峰值检测。来自检测器的脉冲输出被馈送至定时器进行时间差测量,然后由CPU解码出1和0.
图6:磁卡读卡器框图
至此仍然存在增益更新之前是否有数据丢失的问题。为了避免这个问题,磁卡的两头会用前导零进行编码以实现同步(这样可以支持双向划卡)。这样做的目的是使解码器同步于划卡速度。举例来说,在磁道1中,共有约62个前导零。磁道1具有210个比特的数据密度。因此我们可以估算出划卡速度为5 IPS时前导零将持续约60ms时间,划卡速度为50 IPS时前导零将持续6ms.对另外两个磁道来说或多或少是相同的,如图7所示。在人为划卡时一开始就是50 IPS的划卡速度是不可能,因此系统具有比6ms长得多的时间来测量峰值并调整增益。图8显示了增益控制过程。
图7:磁卡中三个磁道的内容
需要注意的是,CPU在划卡期间可能会持续精细调整增益以适应变化的幅度。正常情况下,顺着划卡的方向,划卡速度会增加,从而增加信号幅度。注意,在使用以恒定速度划卡的自动划卡机时这个观点是不正确的。
图8:增益改变过程
实现磁卡读卡器
图9显示了基于赛普拉斯PSoC 1的双磁道磁卡读卡器实现方案。PSoC 1处理器具有与8位处理器内核集成在一起的可配置模拟和数字块,在单颗芯片上集成了所有的功能。需要注意的是,图中所示的无源器件是在处理器的外部。
图9:PSoC 1磁卡读卡器
由于传感器信号可能是负的,因此必须用直流进行偏置。在PSoC 1中,模拟信号可以以不同于电源地的地为参考。这个地被称为模拟地(AGND),输入信号被钳位到这个模拟地。信号随后用可编程增益放大器(PGA)进行两级放大。PGA是用连续时间模拟模块实现的。它具有一个电阻阵列,当配置为放大器时用于改变增益。增益可以被配置为1至48之间18个选项之一。 CY8C28243 PSoC 1集成了一个最大采样速率为150ksps的10位SAR ADC.
CPU读取ADC,然后控制放大器增益。放大后的信号送到磁滞比较器产生边沿接近信号峰值的数字信号。CPU随后必须调整放大器增益,使其阈值接近峰值但不超过峰值。这有助于避免磁卡发生抖动时出现定时误差。磁滞比较器输出则送到定时器进行脉冲宽度测量。CPU读取定时器输出,并解码为逻辑1或0的数据。当划卡结束时,CPU打包数据比特,检查是否有错误,然后通过I2C、SPI或UART接口将数据送给主机。
- 第 1 页:极具成本效益的磁卡读卡器设计
- 第 2 页:读卡头灵敏度
本文导航
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%
相关阅读:
- [工业控制] MOVIPRO:电机初始化Starting up the motor encoder 2023-10-24
- [电子说] 一种用于高精度测量应用的低功耗模数转换器(ADC)解决方案 2023-10-24
- [电子说] 学习STM32F103的ADC功能 2023-10-24
- [电子说] 无线模拟信号采集器0-10v0-5v 4-20mA数据wifi通讯 2023-10-24
- [电子说] 失调误差是如何影响单极性ADC传递函数的? 2023-10-24
- [电子说] STM32速成笔记(7)—ADC 2023-10-24
- [电子说] 一文讲解ADC模数转换芯片的原理及转换过程 2023-10-23
- [电子说] 功率分析仪中校零和消零方法 2023-10-23
( 发表人:广立 )