您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子百科>汽车电子>车身电子控制系统>

 接入方式 - 车载自组网的发展与应用情况

2011年07月06日 09:58 维库 作者:秩名 用户评论(0
4.2 接入方式

  MAC层主要是完成无线资源分布式仲裁和管理的工作,其接入方式首先需要考虑的是一个公平性的问题,可以从两个角度进行考虑:①从节点的角度出发,力图保证节点之间占用的信道带宽相等。②从业务流的角度考虑,力图保证业务流之间占用的信道带宽相等。但是,不论从哪个角度考虑该问题,最终都归结为如何在MAC协议中确保每个网络节点的公平接入。

  4.2.1 802.11DCF

  目前,应用较为广泛的自组网MA C 协议是IEEE 802.11DCFt2sl协议。该协议基于CSMA/CA,节点首先通过竞争进行 rS,CTS信息的交互,在此基础上实现信道的分配,过程如图4 所示。

  

 

  802.11DCF协议在本质上是以较小的RTS,CTS分组的交互,分配较大的无线资源,从而提高无线资源的利用率。

  图中发送方在发送数据之前应先发控制帧RTS;如果接收方收到RTS,在SIFS时间后用控制帧CTS对RTS进行确认;发送方收到确认的CTS,在等待SIFS时间后发数据包;接收方收到数据包,在等待SIFS时间后用ACK确认;发送方收到ACK后,数据包发送完毕。

  然而,802.11DCF协议是为支持分组突发业务而设计的,它不支持实时业务。另外,802.11DCF协议采用的时间随机退避机制不适用于同步网络。

  而车载自组网对数据的实时性要求很高,适合采用基于预约方式的同步MAC协议,因此基于竞争方式的802.11DCF不太适合在车载自组网中应用。

  4.2.2 RR—ALOHA

  在车间通信中要求具备较多的是广播特性,因此对MAC层的可靠性要求非常严格。目前,对无连接业务的可靠性保证研究不多,针对车载自组网的可靠广播研究也很少,目前提出的方法有:在广播中增加控制帧划分路段转发数据包等。为了实现上述的分布式接入策略,根据车载自组网的特点提出了一种新的随机接入方式RR—ALOHA [ (reliable reservation AL OHA),该协议在R—ALOHA基础上改进:

  ①解决了隐藏终端和暴露终端的问题;

  ② 通过每帧周期广播帧信息(FI,frame information),使所有的邻节点都知道每一个时隙的信道使用状况,从而使RR—AL OHA协议能够在车载自组网中正确运行。FI是发送节点感知的前一帧的时隙状态信息。RR—AL OHA 可以在不同的物理层标准下使用,尤其适合采用时隙结构的物理层。当有节点加入时,先侦听一帧的时间,然后选择一个空闲时隙发送一个分组,来预约这个时隙。如果邻节点正确接收到了该分组,则在它的FI中标示出来。当新加入的节点从一帧时间内收到的所有FI中知道邻节点都正确接受到分组时,即认为预约成功,从而将每帧的该时隙作为它的基本信道(BC,base channe1),直到节点离开网络,在这期间其他节点不能访问该时隙。其中,BC 信道用于传送FI、其他信令信息和承载有效载荷。在每一帧中,节点都必须在自己的BC中发送FI信息,并根据邻节点的FI和自己的信道使用情况及时更新FI信息。当BC信道提供的带宽不能满足业务的要求时,节点可以通过预约附加信道的方式占用其他空闲信道,以满足业务要求。如果是点对点通信,节点还可以预约点对点(P2P,point—to—point)信道进行传送,以实现相邻一跳群中的时隙复用,提高信道的利用率。图5显示了节点交换FI信息的示例。

  

 

  4.2.3 CSM CA和RR—AL OHA 的比较

  对于常见自组网一般采用两种类型的MAC协议:一种是基于CSMMCA的异步竞争式MAC协议,另一种是基于时隙的同步预约式MAC协议。

  不过对于车载自组网的特殊性,预约式的同步MAC协议效果可能更好些。表2对CSMA/CA 和RR—ALOHA 这两种MAC协议进行了简单的比较。

  这两种MAC协议各有利弊,通过进一步分析,似乎RR—AL OHA更适合于在车载自组网中使用,但是在RR—ALOHA中不能忽视的一点是,节点通信范围内的邻居节点数不能超过1帧中的时隙数。

  

 

  4.2.4 令牌环

  除了基于CSMA/CA和时隙类的MAC协议外,还有一些其他类型的MAC协议,如令牌环。在具备GPS系统的车辆问可以使用基于非竞争性的令牌环接入方式(如WTRP协议),以提高信道利用率,避免信道冲突,更能满足车辆间安全预警通信的时延要求。在车载自组网中应用令牌环的主要思想:在广播信道上通过令牌组成逻辑环来控制信道的接入,为表述方便,称本车辆(对应通信网络中的本地节点)为TS(this station);前一车辆(对应通信网络中的上一节点)为PS(previous station);后续车辆(对应通信网络中的后续节点)称为NS(next smtion)。考虑实际车辆队列中,设车辆A,B,C构成队列,队列内采用无线令牌环协议,三辆车组成逻辑令牌环,令牌传递顺序为A—B—C—A。设某一时刻B为令牌拥有者,令B为TS,相应的A为PS,C为NS。网络结构示意如图6所示,图中箭头方向表示令牌传递方向,当车辆持有令牌后才能开始进行数据的发送,而那些没有持有令牌的车辆只能进行数据的接受。当传送完一定的数据后,令牌拥有者把令牌传递给后续车辆,开始下一辆车的数据传送。

  

 

  

非常好我支持^.^

(153) 97.5%

不好我反对

(4) 2.5%

( 发表人:叶子 )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!