底盘制动系构造详细图解
底盘制动系构造详细图解
一.制动系统概述
汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统。其作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。
对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以实现上述功能。
1.分类:
(1) 按制动系统的作用
制动系统可分为行车制动系统、驻车制动系统、应急制动系统及辅助制动系统等。用以使行驶中的汽车降低速度甚至停车的制动系统称为行车制动系统;用以使已停驶的汽车驻留原地不动的制动系统则称为驻车制动系统;在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的制动系统称为应急制动系统;在行车过程中,辅助行车制动系统降低车速或保持车速稳定,但不能将车辆紧急制停的制动系统称为辅助制动系统。上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。
(2)按制动操纵能源
制动系统可分为人力制动系统、动力制动系统和伺服制动系统等。以驾驶员的肌体作为唯一制动能源的制动系统称为人力制动系统;完全靠由发动机的动力转化而成的气压或液压形式的势能进行制动的系统称为动力制动系统;兼用人力和发动机动力进行制动的制动系统称为伺服制动系统或助力制动系统。
(3)按制动能量的传输方式
制动系统可分为机械式、液压式、气压式、电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。
2.制动系统的一般工作原理
制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。
可用下图所示的一种简单的液压制动系统示意图来说明制动系统的工作原理。
制动系统工作原理示意图
1.制动踏板 2.推杆 3.主缸活塞 4.制动主缸 5.油管 6.制动轮缸 7.轮缸活塞 8.制动鼓 9.摩擦片 10.制动蹄 11.制动底板 12.支承销 13.制动蹄回位弹簧
一个以内圆面为工作表面的金属制动鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。
当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。
3.轿车典型制动系统的组成
下图给出了一种轿车典型制动系统的组成示意图,可以看出,制动系统一般由制动操纵机构和制动器两个主要部分组成。
轿车典型制动系统组成示意图
1.前轮盘式制动器 2.制动总泵 3.真空助力器 4.制动踏板机构 5.后轮鼓式制动器 6.制动组合阀 7.制动警示灯
(1) 制动操纵机构
产生制动动作、控制制动效果并将制动能量传输到制动器的各个部件,如图中的2、3、4、6,以及制动轮缸和制动管路。
(2) 制动器
产生阻碍车辆的运动或运动趋势的力(制动力)的部件。汽车上常用的制动器都是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩,称为摩擦制动器。它有鼓式制动器和盘式制动器两种结构型式。
二.制动器--鼓式制动器
1.制动器概述
一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使汽车减速。凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。目前汽车所用的摩擦制动器可分为鼓式和盘式两大类。
旋转元件固装在车轮或半轴上,即制动力矩直接分别作用于两侧车轮上的制动器称为车轮制动器。旋转元件固装在传动系的传动轴上,其制动力矩经过驱动桥再分配到两侧车轮上的制动器称为中央制动器。
2.领从蹄式制动器
下图为领从蹄式制动器示意图,设汽车前进时制动鼓旋转方向(这称为制动鼓正向旋转)如图中箭头所示。
领从蹄式制动器示意图
l.领蹄 2.从蹄 3、4.支点 5.制动鼓 6.制动轮缸
沿箭头方向看去,制动蹄1的支承点3在其前端,制动轮缸6所施加的促动力作用于其后端,因而该制动蹄张开时的旋转方向与制动鼓的旋转方向相同。具有这种属性的制动蹄称为领蹄。与此相反,制动蹄2的支承点4在后端,促动力加于其前端,其张开时的旋转方向与制动鼓的旋转方向相反。具有这种属性的制动蹄称为从蹄。
当汽车倒驶,即制动鼓反向旋转时,蹄1变成从蹄,而蹄2则变成领蹄。这种在制动鼓正向旋转和反向旋转时,都有一个领蹄和一个从蹄的制动器即称为领从蹄式制动器。
下图为领从蹄式制动器受力示意图:
领从蹄式制动器受力示意图
如图所示,制动时两活塞施加的促动力是相等的。制动时,领蹄1和从蹄2在促动力FS的作用下,分别绕各自的支承点3和4旋转到紧压在制动鼓5上。旋转着的制动鼓即对两制动蹄分别作用着法向反力N1和N2,以及相应的切向反力T1和T2,两蹄上的这些力分别为各自的支点3和4的支点反力Sl和S2所平衡。
可见,领蹄上的切向合力Tl所造成的绕支点3的力矩与促动力FS所造成的绕同一支点的力矩是同向的。所以力T1的作用结果是使领蹄1在制动鼓上压得更紧从而力T1也更大。这表明领蹄具有"增势"作用。相反,从蹄具有"减势"作用。故二制动蹄对制动鼓所施加的制动力矩不相等。
倒车制动时,虽然蹄2变成领蹄,蹄1变成从蹄,但整个制动器的制动效能还是同前进制动时一样。 在领从式制动器中,两制动蹄对制动鼓作用力N1"和N2"的大小是不相等的,因此在制动过程中对制动鼓产生一个附加的径向力。
凡制动鼓所受来自二蹄的法向力不能互相平衡的制动器称为非平衡式制动器。
3.单向双领蹄式制动器
在制动鼓正向旋转时,两蹄均为领蹄的制动器称为双领蹄式制动器,其结构示意图如下图所示。
双领蹄式制动器受力示意图
1.制动轮缸 2.制动蹄 3.支承销 4.制动鼓
双领蹄式制动器与领从蹄式制动器在结构上主要有两点不相同,一是双领蹄式制动器的两制动蹄各用一个单活塞式轮缸,而领从蹄式制动器的两蹄共用一个双活塞式轮缸;二是双领蹄式制动器的两套制动蹄、制动轮缸、支承销在制动底板上的布置是中心对称的,而领从蹄式制动器中的制动蹄、制动轮缸、支承销在制动底板上的布置是轴对称布置的。
4.双向双领蹄式制动器
无论是前进制动还是倒车制动,两制动蹄都是领蹄的制动器称为双向双领蹄式制动器,下图是其结构示意图器。
双向双领蹄式制动器示意图
1.制动轮缸 2.制动蹄 3.活塞 4.制动鼓
与领从蹄式制动器相比,双向双领蹄式制动器在结构上有三个特点,一是采用两个双活塞式制动轮缸;二是两制动蹄的两端都采用浮式支承,且支点的周向位置也是浮动的;三是制动底板上的所有固定元件,如制动蹄、制动轮缸、回位弹簧等都是成对的,而且既按轴对称、又按中心对称布置。
下图是一种双向双领蹄式制动器的具体结构。
双向双领蹄式制动器
1.制动鼓 2.制动轮缸 3.制动底板 4、8.制动蹄 5.回位弹簧 6.调整螺母 7.可调支座 9.支座
在前进制动时,所有的轮缸活塞都在液压作用下向外移动,将两制动蹄4和8压靠到制动鼓1上。在制动鼓的摩擦力矩作用下,两蹄都绕车轮中心O朝箭头所示的车轮旋转方向转动,将两轮缸活塞外端的支座9推回,直到顶靠到轮缸端面为止。此时两轮缸的支座9成为制动蹄的支点,制动器的工作情况便同图d-zd-05所示的制动器一样。
倒车制动时,摩擦力矩的方向相反,使两制动蹄绕车轮中心O逆箭头方向转过一个角度,将可调支座7连同调整螺母6一起推回原位,于是两个支座7便成为蹄的新支承点。这样,每个制动蹄的支点和促动力作用点的位置都与前进制动时相反,其制动效能同前进制动时完全一样。
5.双从蹄式制动器
前进制动时两制动蹄均为从蹄的制动器称为双从蹄式制动器,其结构示意图见下图:
双从蹄式制动器示意图
1.支承销 2.制动蹄 3.制动轮缸 4.制动鼓
这种制动器与双领蹄式制动器结构很相似,二者的差异只在于固定元件与旋转元件的相对运动方向不同。虽然双从蹄式制动器的前进制动效能低于双领蹄式和领从蹄式制动器,但其效能对摩擦系数变化的敏感程度较小,即具有良好的制动效能稳定性。
双领蹄、双向双领蹄、双从蹄式制动器的固定元件布置都是中心对称的。如果间隙调整正确,则其制动鼓所受两蹄施加的两个法向合力能互相平衡,不会对轮毂轴承造成附加径向载荷。因此,这三种制动器都属于平衡式制动器。
6.鼓式制动器小结
以上介绍的各种鼓式制动器各有利弊。
就制动效能而言,在基本结构参数和轮缸工作压力相同的条件下,自增力式制动器由于对摩擦助势作用利用得最为充分而居首位,以下依次为双领蹄式、领从蹄式、双从蹄式。但蹄鼓之间的摩擦系数本身是一个不稳定的因素,随制动鼓和摩擦片的材料、温度和表面状况(如是否沾水、沾油,是否有烧结现象等)的不同可在很大范围内变化。自增力式制动器的效能对摩擦系数的依赖性最大,因而其效能的热稳定性最差。
在制动过程中,自增力式制动器制动力矩的增长在某些情况下显得过于急速。双向自增力式制动器多用于轿车后轮,原因之一是便于兼充驻车制动器。单向自增力式制动器只用于中、轻型汽车的前轮,因倒车制动时对前轮制动器效能的要求不高。双从蹄式制动器的制动效能虽然最低,但却具有最良好的效能稳定性,因而还是有少数华贵轿车为保证制动可靠性而采用(例如英国女王牌轿车)。领从蹄制动器发展较早,其效能及效能稳定性均居于中游,且有结构较简单等优点,故目前仍相当广泛地用于各种汽车。
三.盘式制动器
1.盘式制动器概述
盘式制动器摩擦副中的旋转元件是以端面工作的金属圆盘,被称为制动盘。
其固定元件则有着多种结构型式,大体上可分为两类。一类是工作面积不大的摩擦块与其金属背板组成的制动块,每个制动器中有2~4个。这些制动块及其促动装置都装在横跨制动盘两侧的夹钳形支架中,总称为制动钳。这种由制动盘和制动钳组成的制动器称为钳盘式制动器。另一类固定元件的金属背板和摩擦片也呈圆盘形,制动盘的全部工作面可同时与摩擦片接触,这种制动器称为全盘式制动器。
钳盘式制动器过去只用作中央制动器,但目前则愈来愈多地被各级轿车和货车用作车轮制动器。全盘式制动器只有少数汽车(主要是重型汽车)采用为车轮制动器。这里只介绍钳盘式制动器。钳盘式制动器又可分为定钳盘式和浮钳盘式两类。
盘式制动器结构图如下图所示。
盘式制动器结构图
2.定钳盘式制动器
定钳盘式制动器的结构示意图见下图:
定钳盘式制动器示意图
1.制动盘 2.活塞 3.摩擦块 4.进油口 5.制动钳体 6.车桥部
在制动盘1上的制动钳体5固定安装在车桥6上,它不能旋转也不能沿制动盘轴线方向移动,其内的两个活塞2分别位于制动盘1的两侧。
制动时,制动油液由制动总泵(制动主缸)经进油口4进入钳体中两个相通的液压腔中,将两侧的制动块3压向与车轮固定连接的制动盘1,从而产生制动。
这种制动器存在着以下缺点:油缸较多,使制动钳结构复杂;油缸分置于制动盘两侧,必须用跨越制动盘的钳内油道或外部油管来连通,这使得制动钳的尺寸过大,难以安装在现代化轿车的轮辋内;热负荷大时,油缸和跨越制动盘的油管或油道中的制动液容易受热汽化;若要兼用于驻车制动,则必须加装一个机械促动的驻车制动钳。
3.浮钳盘式制动器
下图所示为浮钳盘式制动器示意图。
浮钳盘式制动器示意图
1.制动盘 2.制动钳体 3.摩擦块 4.活塞 5.进油口 6.导向销 7.车桥
钳体2通过导向销6与车桥7相连,可以相对于制动盘1轴向移动。制动钳体只在制动盘的内侧设置油缸,而外侧的制动块则附装在钳体上。
制动时,液压油通过进油口5进入制动油缸,推动活塞4及其上的摩擦块向右移动,并压到制动盘上,并使得油缸连同制动钳体整体沿销钉向左移动,直到制动盘右侧的摩擦块也压到制动盘上夹住制动盘并使其制动。
与定钳盘式制动器相反,浮钳盘式制动器轴向和径向尺寸较小,而且制动液受热汽化的机会较少。此外,浮钳盘式制动器在兼充行车和驻车制动器的情况下,只须在行车制动钳油缸附近加装一些用以推动油缸活塞的驻车制动机械传动零件即可。故自70年代以来,浮钳盘式制动器逐渐取代了定钳盘式制动器。
4.盘式制动器的特点
盘式制动器与鼓式制动器相比,有以下优点:
一般无摩擦助势作用,因而制动器效能受摩擦系数的影响较小,即效能较稳定;
浸水后效能降低较少,而且只须经一两次制动即可恢复正常;
在输出制动力矩相同的情况下,尺寸和质量一般较小;
制动盘沿厚度方向的热膨胀量极小,不会象制动鼓的热膨胀那样使制动器间隙明显增加而导致制动踏板行程过大;
较容易实现间隙自动调整,其他保养修理作业也较简便。
对于钳盘式制动器而言,因为制动盘外露,还有散热良好的优点。
盘式制动器不足之处是效能较低,故用于液压制动系统时所需制动促动管路压力较高,一般要用伺服装置。
目前,盘式制动器已广泛应用于轿车,但除了在一些高性能轿车上用于全部车轮以外,大都只用作前轮制动器,而与后轮的鼓式制动器配合,以期汽车有较高的制动时的方向稳定性。在货车上,盘式制动器也有采用,但离普及还有相当距离。
四、转向传动机构
转向传动机构的功用是将转向器输出的力和运动传到转向桥两侧的转向节,使两侧转向轮偏转,且使两转向轮偏转角按一定关系变化,以保证汽车转向时车轮与地面的相对滑动尽可能小。
1. 汽车转向时内外轮转角关系
汽车转向时,要使各车轮都只滚动不滑动,各车轮必须围绕一个中心点O转动,如图d-zx-07所示。显然这个中心要落在后轴中心线的延长线上,并且左、右前轮也必须以这个中心点O为圆心而转动。
为了满足上述要求,左、右前轮的偏转角应满足如下关系:
ctga = ctgb + B/L
下图汽车转向时各车轮的运动轨迹
2. 与非独立悬架配用的转向传动机构
与非独立悬架配用的转向传动机构主要包括转向摇臂2、转向直拉杆3转向节臂4和转向梯形。在前桥仅为转向桥的情况下,由转向横拉杆6和左、右梯形臂5组成的转向梯形一般布置在前桥之后,如图所示。当转向轮处于与汽车直线行驶相应的中立位置时,梯形臂5与横拉杆6在与道路平行的平面(水平面)内的交角>90。在发动机位置较低或转向桥兼充驱动桥的情况下,为避免运动干涉,往往将转向梯形布置在前桥之前,此时上述交角<90,如图d-zx-08b所示。若转向摇臂不是在汽车纵向平面内前后摆动,而是在汽车的横向左右摆动,则可将转向直拉杆3横置,并借球头销直接带动转向横拉杆6,从而推使两侧梯形臂转动,如图所示。下面对转向传动机构的主要组成零件的结构作简要介绍。
与非独立悬架配用的转向传动机构示意图
1.转向器 2.转向摇臂 3.转向直拉杆 4.转向节臂 5.梯形臂 6.转向横拉杆
(1)转向摇臂
转向摇臂的作用是把转向器输出的力和运动传给直拉杆或横拉杆,进而推动转向轮偏转。转向摇臂的典型结构如下图所示。
1.带锥度的三角形齿形花键 2.转向摇臂 3.球头销 4.摇臂轴
(2)转向直拉杆
转向直拉杆的作用是将转向摇臂传来的力和运动传给转向梯形臂(或转向节臂)。它所受的力既有拉力、也有压力,因此直拉杆都是采用优质特种钢材制造的,以保证工作可靠。直拉杆的典型结构如图十所示。在转向轮偏转或因悬架弹性变形而相对于车架跳动时,转向直拉杆与转向摇臂及转向节臂的相对运动都是空间运动,为了不发生运动干涉,上述三者间的连接都采用球销。
1.螺母 2.球头销 3.橡胶防尘垫 4.螺塞 5.球头座 6.压缩弹簧 7.弹簧座 8.油嘴 9.直拉杆体 10.转向摇臂球头销
(3)转向横拉杆
转向横拉杆是联系左、右梯形臂并使其协调工作的连接杆,它在汽车行驶过程中反复承受拉力和压力,因此多用高强度冷拉钢管制造。
(4) 转向减振器
随着车速的提高,现代汽车的转向轮有时会产生摆振(转向轮绕主销轴线往复摆动,甚至引起整车车身的振动),这不仅影响汽车的稳定性,而且还影响汽车的舒适性、加剧前轮轮胎的磨损。在转向传动机构中设置转向减振器是克服转向轮摆振的有效措施。转向减振器的一端与车身(或前桥)铰接,另一端与转向直拉杆(或转向器)铰接。
下图转向减振器结构图
1.连接环衬套 2.连接环橡胶套 3.油缸4.压缩阀总成 5.活塞及活塞杆总成 6.导向座 7.油封 8.挡圈 9.轴套及连接环总成 10.橡胶储液缸
3. 与独立悬架配用的转向传动机构
当转向轮独立悬挂时,每个转向轮都需要相对于车架作独立运动,因而转向桥必须是断开式的。与此相应,转向传动机构中的转向梯形也必须是断开式的。图十二为几种与独立悬架配用的转向传动机构示意图。
下图与独立悬架配用的转向传动机构示意图
1.转向摇臂 2.转向直拉杆 3.左转向横拉杆 4.右转向横拉杆 5.左梯形臂 6.右梯形臂 7.摇杆 8.悬架左摆臂 9.悬架右摆臂 10.齿轮齿条式转向器
五 动力转向器
采用动力转向系统的汽车转向所需的能量,在正常情况下,只有小部分是驾驶员提供的体能,而大部分是发动机(或电机)驱动的油泵(或空气压缩机)所提供的液压能(或气压能)。
用以将发动机(或电机)输出的部分机械能转化为压力能,并在驾驶员控制下,对转向传动装置或转向器中某一传动件施加不同方向的液压或气压作用力,以助驾驶员施力不足的一系列零部件,总称为动力转向器。
1.动力转向器的类型及工作原理
(1)动力转向器的类型
按传能介质的不同,动力转向器有气压式和液压式两种。装载质量特大的货车不宜采用气压动力转向器,因为气压系统的工作压力 较低(一般不高于0.7MPa),用于重型汽车上时,其部件尺寸将过于庞大。液压动力转向器的工作压力可高达10MPa以上,故其部件尺寸很小。液压系统工作时无噪声,工作滞后时间短,而且能吸收来自不平路面的冲击。因此,液压动力转向器已在各类各级汽车上获得广泛应用。
根据机械式转向器、转向动力缸和转向控制阀三者在转向装置中的布置和联接关系的不同,液压动力转向装置分为整体式(机械式转向器、转向动力缸和转向控制阀三者设计为一体)、组合式(把机械式转向器和转向控制阀设计在一起,转向动力缸独立)和分离式(机械式转向器独立,把转向控制阀和转向动力缸设计为一体)三种结构型式。
这里仅介绍液压整体式动力转向器。
(2)动力转向系统的工作原理
动力转向系统是在机械式转向系统的基础上加一套动力辅助装置组成的。图d-zx-13,转向油泵6安装在发动机上,由曲轴通过皮带驱动并向外输出液压油。转向油罐5有进、出油管接头,通过油管分别与转向油泵和转向控制阀2联接。转向控制阀用以改变油路。机械转向器和缸体形成左右两个工作腔,它们分别通过油道和转向控制阀联接。
当汽车直线行驶时,转向控制阀2将转向油泵6泵出来的工作液与油罐相通,转向油泵处于卸荷状态,动力转向器不起助力作用。当汽车需要向右转向时,驾驶员向右转动转向盘,转向控制阀将转向油泵泵出来的工作液与R腔接通,将L腔与油罐接通,在油压的作用下,活塞向下移动,通过传动结构使左、右轮向右偏转,从而实现右转向。向左转向时,情况与上述相反。
下图液压动力转向系统示意图
l.转向操纵机构 2.转向控制阀 3.机械转向器与转向动力缸总成 4.转向传动结构 5.转向油罐 6.转向油泵 R.转向动力缸右腔 L.转向动力缸左腔
2.液压动力转向器
下图为一种动力转向器分配阀示意图。汽车直线行驶时,阀芯与阀套的位置关系如图中所示。自泵来的液压油流向左右动力缸及回油缸,左右动力缸油压相等,汽车保持直线行驶。驾驶员转动方向盘时,阀芯与阀套的相对位置发生改变,使得大部分或全部来自泵的液压油流入某一动力缸,促进汽车左传或右转。
1.阀套 2.阀芯 R.接右转向动力腔 L.接左转向动力腔 B.接转向油泵 G.接转向油罐
当转向盘停在某一位置不再继续转动时,阀芯与阀套相对位移减小,左右动力腔油压差减小。但仍有一定的助力作用,此时的助力力矩与车轮的回正力矩相平衡,使车轮维持在某一转向位置上。
3.转向油泵
转向油泵是助力转向系统的动力源。转向油泵经转向控制阀向转向助力缸提供一定压力和流量的工作油液。目前,转向油泵大多采用双作用式叶片泵。这种油泵有两种结构型式,一种是潜没式转向油泵,另一种为非潜没式转向油泵。潜没式油泵与贮液罐是一体的,即油泵潜没在贮液罐的油液中;非潜没式转向油泵的贮液罐与转向油泵分开安装,用油管与转向油泵相连接。
下图为一种潜没式双作用叶片泵结构示意图。
l.驱动轴 2.壳体 3.前配油盘 4. 叶片 5.储油罐 6.定子 7.后配油盘 8.后盖 9.弹簧 10.管接头 11.柱塞 12.阀杆 13.钢球 14.转子 A.出油口 B.出油腔 C.进油腔 D.油道 H.主量孔
(2) 叶片泵的工作原理
如下图所示,当转子顺时针方向旋转时,叶片在离心力及高压油的作用下紧贴在定子的内表面上。其工作容积开始由小变大,从吸油口吸进油液;而后工作容积由大变小,压缩油液,经压油口向外供油。由于转子每旋转一周,每个工作腔都各自吸、压油两次,故将这种型式的叶片泵称为双作用式叶片泵。双作用叶片泵有两个吸油区和两个排油区,并且各自的中心角是对称的,所以作用在转子上的油压作用力互相平衡。因此,这种油泵也称为卸荷式叶片泵。
1.进油口 2.叶片 3.定子 4.出油口 5.转子
非常好我支持^.^
(99) 97.1%
不好我反对
(3) 2.9%
相关阅读:
( 发表人:admin )