最大似然估计学习总结 - 最大似然检测算法认识与理解
最大似然估计学习总结------MadTurtle
1. 作用
在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计。
2. 离散型
设为离散型随机变量,为多维参数向量,如果随机变量相互独立且概率计算式为P{,则可得概率函数为P{}=,在固定时,上式表示的概率;当已知的时候,它又变成的函数,可以把它记为,称此函数为似然函数。似然函数值的大小意味着该样本值出现的可能性的大小,既然已经得到了样本值,那么它出现的可能性应该是较大的,即似然函数的值也应该是比较大的,因而最大似然估计就是选择使达到最大值的那个作为真实的估计。
3. 连续型
设为连续型随机变量,其概率密度函数为,为从该总体中抽出的样本,同样的如果相互独立且同分布,于是样本的联合概率密度为。大致过程同离散型一样。
4. 关于概率密度(PDF)
我们来考虑个简单的情况(m=k=1),即是参数和样本都为1的情况。假设进行一个实验,实验次数定为10次,每次实验成功率为0.2,那么不成功的概率为0.8,用y来表示成功的次数。由于前后的实验是相互独立的,所以可以计算得到成功的次数的概率密度为:
= 其中y
由于y的取值范围已定,而且也为已知,所以图1显示了y取不同值时的概率分布情况,而图2显示了当时的y值概率情况。
那么在[0,1]之间变化而形成的概率密度函数的集合就形成了一个模型。
5. 最大似然估计的求法
由上面的介绍可以知道,对于图1这种情况y=2是最有可能发生的事件。但是在现实中我们还会面临另外一种情况:我们已经知道了一系列的观察值和一个感兴趣的模型,现在需要找出是哪个PDF(具体来说参数为多少时)产生出来的这些观察值。要解决这个问题,就需要用到参数估计的方法,在最大似然估计法中,我们对调PDF中数据向量和参数向量的角色,于是可以得到似然函数的定义为:
该函数可以理解为,在给定了样本值的情况下,关于参数向量取值情况的函数。还是以上面的简单实验情况为例,若此时给定y为7,那么可以得到关于的似然函数为:
继续回顾前面所讲,图1,2是在给定的情况下,样本向量y取值概率的分布情况;而图3是图1,2横纵坐标轴相交换而成,它所描述的似然函数图则指出在给定样本向量y的情况下,符合该取值样本分布的各种参数向量的可能性。若相比于,使得y=7出现的可能性要高,那么理所当然的要比更加接近于真正的估计参数。所以求的极大似然估计就归结为求似然函数的最大值点。那么取何值时似然函数最大,这就需要用到高等数学中求导的概念,如果是多维参数向量那么就是求偏导。
主要注意的是多数情况下,直接对变量进行求导反而会使得计算式子更加的复杂,此时可以借用对数函数。由于对数函数是单调增函数,所以与具有相同的最大值点,而在许多情况下,求的最大值点比较简单。于是,我们将求的最大值点改为求的最大值点。
若该似然函数的导数存在,那么对关于参数向量的各个参数求导数(当前情况向量维数为1),并命其等于零,得到方程组:
可以求得时似然函数有极值,为了进一步判断该点位最大值而不是最小值,可以继续求二阶导来判断函数的凹凸性,如果的二阶导为负数那么即是最大值,这里再不细说。
还要指出,若函数关于的导数不存在,我们就无法得到似然方程组,这时就必须用其它的方法来求最大似然估计值,例如用有界函数的增减性去求的最大值点
- 第 1 页:最大似然检测算法认识与理解
- 第 2 页:最大似然估计学习总结
本文导航
非常好我支持^.^
(162) 93.6%
不好我反对
(11) 6.4%
相关阅读:
- [电子说] 智慧矿山ai算法系列解析 堵料检测算法功能优势 2023-09-28
- [工业控制] 基于改进FCOS的表面缺陷检测算法 2023-09-28
- [电子说] 浅谈图像处理-harris角点检测算法 2023-09-22
- [电子说] 更深层地理解深伪技术 2023-09-11
- [电子说] 大学毕业设计一席谈之四十一 压电信号的睡眠检测算法(11)完善程序 2023-08-29
- [汽车电子] 基于Transformer的目标检测算法难点 2023-08-24
- [电子说] 掌握基于Transformer的目标检测算法的3个难点 2023-08-22
- [汽车电子] 基于Transformer的目标检测算法 2023-08-16
( 发表人:李倩 )