您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>电子百科>无线通信>

色码架构 - HEW将用户密集环境中的每位用户平均传输率提升至4倍以上

2017年11月16日 19:42 网络整理 作者:judyzhong 用户评论(0

当802.11ax STA使用色码架构的CCA规则时,它们也允许搭配传输功率控制来一同调整OBSS讯号侦测门坎。这项调整可望改善系统层级效能以及频谱资源的使用效率。除此之外,802.11ax STA也可调整CCA参数,例如能量侦测层级和讯号侦测层级。

除了使用CCA来判断目前通道是否为闲置或忙碌中,802.11标准也采用了网络配置向量(NAV),这个时间机制会保持未来流量的预测,以供STA指出紧接在目前讯框后的讯框需要多少时间。NAV可做为虚拟载波感测,用来为802.11通讯协议作业至关重要的讯框确保媒体预约(例如控制框架以及RTS/CTS交换后的数据和ACK)。

负责开发高效率无线标准的802.11工作团队可能会在802.11ax标准中包含多个NAV字段,也就是采用两个不同的NAV。同时拥有Intra-BSS NAV和Inter-BSS NAV不仅可协助STA预测自身BSS内的流量,还能让它们在得知重迭流量状态时自由传输(图10)。

图10 MU PPDU交换和NAV设定范例

 

图10 MU PPDU交换和NAV设定范例

透过目标唤醒时间省电

802.11ax AP可以和参与其中的STA协调目标唤醒时间(TWT)功能的使用,以定义让个别基地台存取媒体的特定时间或一组时间。STA和AP会交换信息,而当中将包含预计的活动持续时间。如此一来,AP就可控制需要存取媒体的STA间的竞争和重迭情况。802.11ax STA可以使用TWT来降低能量损耗,在自身的TWT来临之前进入睡眠状态。另外,AP还可另外设定排程并将TWT值提供给STA,这样一来,双方之间就不需要存在个别的TWT协议。本标准将此程序称为「广播TWT作业」(图11)。

图11 目标唤醒时间广播作业范例

 

图11 目标唤醒时间广播作业范例

802.11ax带来六大测试挑战

由于导入许多先进射频技术与访问控制机制,802.11ax系统的测试与设计验证将面临六大挑战,分别出现在误差向量幅度(EMV)、频率错误、STA功率控制、存取点接收器灵敏度、上链带内散射与MIMO测试上。

更严格的EVM规定

现在802.11ax会托管1024-QAM的相关支持。此外,子载波之间的间隔只有78.125kHz。这意味着802.11ax装置需要相位噪声效能更出色的振荡器,以及线性能力更优异的射频前端。而量测待测物(DUT)动作的测试仪器则会要求其EVM噪声水平应远低于DUT。
表3列出了802.11ax兼容装置所应符合的EVM等级。

国家仪器(National Instruments, NI)的WLAN测试系统将射频向量讯号收发器(VST)和NI WLAN Measurement Suite合而为一,以支持802.11ax讯号的产生和分析。该软件可支持自二元相位键移(MCS0)至1024-QAM(MCS10与 MCS11)之间的波形。此外,NI的VST硬件可持续提供同级最佳的EVM准位量测,以满足射频特性参数描述和生产作业需求。

绝对与相对频率错误

OFDMA系统对频率和频率偏移有着极高的磁化率。因此,802.11ax多使用者OFDMA效能需要极为密切的频率同步化和频率偏移修正。此要求将确保所有STA都能在所配置的子频道中运作,并将频谱泄漏的情况减至最低。此外,这项严格的时序需求也可确保所有STA都将同时进行传输,以响应AP的MU触发讯框。

以4G LTE系统来说,基地台会利用GPS授时频率来同步所有相关装置。然而,802.11ax AP不仅与这项优势无缘,还需要使用内建的振荡器充当维护系统同步化的参考依据。之后,STA会自AP的触发讯框撷取偏移信息,并据此调整内部的频率和频率参考。

802.11ax装置的频率和频率偏移测试将涉及下列测试:
.绝对频率错误:DUT会传送802.11ax讯框,而测试仪器则会使用标准参考来量测频率和频率偏移。结果将与目前802.11ac规格的所述数据相似,限制约为±20ppm。
.相对频率错误:这将测试不属于AP的STA参与上链多用户传输以链接AP频率的能力。测试程序包含两个步骤。首先,测试仪器会将触发框架传送给DUT。

DUT将依照取自于触发讯框的频率和频率信息进行自适应。接着,DUT会使用已修正频率的框架做出回应,而测试仪器则会量测这些框架的频率错误。在载波频率偏移和时序补偿完成后,这些限制将密切维持在相对于AP触发讯框仅不到 350 Hz和±0.4微秒的程度(图12)。

图12 相对频率错误量测的设定

 

图12 相对频率错误量测的设定

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

相关阅读:

( 发表人:黄昊宇 )

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!