三、100W电子管扩音机改由晶体管整流供电
该机的电源整流电路如下图a所示。
电路由灯丝变压器B2、次高压变压器B1和大高压变压器B3供电。
开机时,先合上低压开关Kl,接通灯丝变压器B2,使整机所有电子管灯丝通电开始对阴极进行加热。由于+810V大高压由两只汞汽整流管VI、V2(866X2)整流供电,故灯丝必须加热5分钟.才能加高压。
加热5分钟后,合上高压开关K2.由双二极电子管Vl(5U4G)将B2次级的470V+470V交流电压整流,经ZL1、C3、C4、c5、C6滤波后输出+436V电压(次高压),供给推动级(6L6GX2)前置级工作电压。 高压变压器B3次级920V+920V交流高压经汞汽管V2、V3(866X2)整流.ZL2、、C8滤波后输出+810V大高压,向末级功放管(一对FU-7接成乙类推挽电路)供电。
由于整流管损坏,遂将电路改晶体二极管整流供电,改装步骤如下:
(1)首先对晶体二极管D1~D14进行耐压检测,耐压大干1000V者留用,低于1000V者淘汰。
将14只二极管按下图B所示分四组进行串联焊接,在每组串接好的二极管套上一根φ6mm热缩管,两端各露出7mm的线头供焊接用。然后用电吹风向热缩管加热,用这样的方法将14只二极管改装成四个二极管柱,并将每个二极管柱接人相应的位置(如下图b所示)。
对开关三极管BG1和BC2耐压进行检测.BGl(2SC4706)耐压大于900V合格.BG2(2SC143)耐压大于1400V合格。
拔掉原机整流电子管V1、V2、V3,将原VI管的8脚管座从铁底板上拆除,在该管座位置上安装上一只小7脚管座,用于插新安装的启动电子管V4(6X2),如下图b所示。
(2)拆除变压器B3灯丝绕组与V3、V4的连线.拆除B3灯丝绕组中心抽头与滤波扼流圈ZL2的连线。
(3)将B3绕组V与绕组按下图b所示进行串接,得到5V+2.5V=7,5V交流,再串接一只2W/4Ω的电阻RX,在RX上降去1.2V电压后,在V4灯丝(3)、(4)脚两端得到6.3V的交流电压。
(4)将ZL1输出端与C5连接点之间打“X”处断开(如下图A所示).串接人BG1,并且使BGI的C、B极分别与V4管座(2)、(5)脚相连接。
(5)将212输出端打“X”处断开,串接入BG2.使BG2的C、B极分别与V4的(7)、(1)脚相连接。
(6)将K2短接,仅保留Kl。插上电子管V4(6X2).由于电子管灯丝与阴极间耐压有350V.若灯丝接地,则+810V的高压必将灯丝与阴极间击穿损坏,通过把V4灯丝悬浮(不接地),即可保证V4灯丝和阴极不被击穿,从而确保整个电路的安全。
改装完毕,经检查无误后,可通电试机,勿须作任何调试。
四、带阻行管及带阻晶体管检测方法
1.带阻晶体管的检测
因带阻晶体管内部含有1 只或2 只电阻器,故检测的方法与普通晶体管略有不同。检测之前应先了解电阻器的阻值。
测量时,将万用表置于R×1 kΩ 档,测量带阻晶体管集电极c 与发射极e 之间的电阻值(测NPN管时,应将黑表笔接c 极,红表笔接e 极;测PNP 管时,应将红表笔接c 极,黑表笔接e 极,正常时,阻值应为无穷大,且在测量的同时,若将带阻晶体管的基极b 与集电极c 之间短路后,则应有小于50 kΩ的电阻值。否则,可确定为晶体管不良。
也可以用测量带阻晶体管b、e 极,c、b 极及c、e 极之间正、反向电阻值的方法(应考虑到内含电阻器对各极间正、反向电阻值的影响)来估测晶体管是否损坏。
2.带阻尼行输出管的检测
用万用表R×1 Ω 档,测量发射结(基极b 与发射极e 之间)的正、反向电阻值。正常的行输出管,其发射结的正、反向电阻值均较小,只有20~50 Ω。
用万用表R×1 kΩ 档,测量行输出管集电结(基极b 与集电极c 之间)的正、反向电阻值。正常时,正向电阻值(黑表笔接基极b,红表笔接集电极c)为3~10 kΩ,反向电阻值为无穷大。若测得正、反向电阻值均为0 或均为无穷大,则说明该管的集电结已击穿损坏或开路损坏。
用万用表R×1 kΩ 档,测量行输出管c、e 极内部阻尼二极管的正、反向电阻值,正常时正向电阻值较小(6~7 kΩ),反向电阻值为无穷大。若测得c、e 极之间的正、反向电阻值均很小,则是行输出管c、e 极之间短路或阻尼二极管击穿损坏;若测得c、e 极之间的正、反向电阻值均为无穷大,则是阻尼二极管开路损坏。
带阻尼行输出管的反向击穿电压可以用晶体管直流参数测试表测量,其方法与普通晶体管相同。
带阻尼行输出管的放大能力(交流电流放大系数β 值)不能用万用表的hFE 档直接测量,因为其内部有阻尼二极管和保护电阻器。测量时可在行输出管的集电极c 与基极b 之间并接1 只30 kΩ的电位器,然后再将行输出管各电极hFE 插孔连接。适当调节电位器的电阻值,并从万用表上读出β值。
五、电子辐照对功率双极晶体管损耗分析
功率双极晶体管由于其低廉的成本, 在开关电源中作为功率开关管得到了广泛的应用。应用电子辐照技术可以减小少子寿命, 降低功率双极晶体管的储存时间、下降时间, 提高开关速度, 且一致性、重复性好, 成品率高, 这是高反压功率开关晶体管传统制造工艺无法比拟的。为了降低功率双极晶体管的损耗, 本文采用了10 MeV 电子辐照来减小其关断延迟时间, 提高开关电源转换效率。
通过在功率双极晶体管中加入钳位电路使得晶体管不能达到深饱和也能降低关断延时和关断损耗,本文也对电子辐照双极晶体管和钳位型双极晶体管进行了比较。
本文实验中采用的开关电源为BCD 半导体公司研发的3765序列充电器, 采用的功率双极晶体管是BCD半导体公司提供的APT13003E, 它被广泛应用于电子镇流器、电池充电器及电源适配器等功率开关电路中。
1 开关电源中开关晶体管的损耗
图1所示为一个典型的反激式开关电源示意图。在示意图中, 开关晶体管Q1 的集电极连接变压器T1.当控制器驱动为高电平时, Q1 导通, 能量存储到变压器T1 中。当控制器驱动为低电平时, Q1关断, 能量通过变压器T1 释放到后端。图2所示为开关晶体管开关过程中集电极电压和电流的波形示意图。
关晶体管在工作过程中的损耗分为开关损耗和稳态损耗, 其中开关损耗包括导通损耗和关断损耗, 稳态损耗包括通态损耗和截止损耗, 其中截止损耗占总的损耗的比率很小, 可以忽略不计。我们把Vce由90% Vindc降到110% Vcesat所用的时间定义为导通延时, 即图2中的t1 - t0, 把IC 由90% Icmax下降到0所用的时间定义为关断延时, 即t3 - t2。
在开关晶体管开通时, 集电极电压在控制器驱动电压为高时, 基极电流变大, 集电极电压由Vindc下降为0, 此时由于变压器与原边并联的寄生电容两端的电压差也从0变为Vindc, 寄生电容充电, 因此在开关晶体管集电极产生一个尖峰电流, 另一方面, 如果副边整流二极管的反向恢复电流没有降到0, 也会进一步加大这个尖峰电流。开关晶体管出现集电极电压和电流交替现象, 产生导通损耗, 直到集电极电压降到Vcesat.导通损耗可以表示为:
在晶体管导通后, 集电极电流从0逐渐变大, 而Vcesat不为0, 因此产生通态损耗。通态损耗可以表示为:
在开关晶体管关断时, 集电极电流不能马上降为0, 而集电极电压已经从Vcesat开始上升, 在开关晶体管上产生电压电流交替现象, 从而产生关断损耗。
由于变压器是电感元件, 当开关突然关断时, 变压器电感元件电流不能突变, 会产生较大的反激电压, 阻碍电流变化, 通过电路加在开关管上, 产生比较大的损耗。关断损耗可以表示为:
开关管总的损耗可以表示为:
一般情况下, 关断损耗在开关损耗中占的比率最大, 而关断损耗跟开关晶体管的关断延迟时间有关, 减小关断延迟时间( t3 - t2 ), 加快集电极电流下降速度, 可以降低开关晶体管的总损耗。
评论
查看更多