一 数制
1. 含义. 表示数大小的计数方法
基数(底数)----R进制的R就是基数
数字符号------R进制有R个数字符号0,1,2,…(R-1)
2. 数的表示方法
(1) 位置表示法 (数字符号和小数点的一定排列表示数的大小)
(129.5)D 权,权系数
(N)10=(dn-1,dn-2,…d1d0.d-1…d-m)
(N)R=(rn-1,rn-2,…r1r0.r-1…r-m)
(2) 多项式的表示法(把数字符号和对应的权系数构成积之和表达式)
(N)10=(dn-1·10n-1+dn-2·10n-2+…d0·100+d-1·10-1+…+d-m·10-m)
(N)R=(rn-1·10n-1+rn-2·10n-2+…+r0·100+r-1·10-1+…+r-n·10-n)
3. 常用计数制
|
10进制(D)
|
2进制(B)
|
16进制(H)
|
R进制
|
基数
|
10
|
2
|
16
|
R
|
数字符号
|
0,1,…9
|
0,1
|
0,…9,A,…F
|
0,1…(R-1)
|
表示方法
|
n-1
(N)10 =(∑di·10i)10 -m |
n-1
(N)2=(Σbi·2i)2 -m |
n-1
(N)16=(Σhi·16i)16 -m |
n-1
(N)R=(Σri·Ri)R -m |
4.数制转换
含义. 同一个数从一种计数制变换为另一种计数制的表示形式。
(1) 2进制→10进制-----采用多项式替代法(把二进制用多项式在十进制中表示)
(1101.1)2=(1·23+1·22+1·20+1·2-1)10=(13.5)10
(2) 10进制→2进制----采用基数除乘法整数部分用基数除法,小数部分用基数乘法
(47.6)10=(101111.1001)2
(3) R1进制------------→10进制----------→R2进制(R1和R2非10)
多项式替代法 基数除乘法
(4) 2K进制之间的互相转换
21---2进制 0 1
22---4进制 00 01 10 11
23---8进制 000 001 010 011 100 101 110 111 .
.
(101011)2=(223)4=(53)8=(2B)16
(11011.1)2=(123.2)4=(33.4)8=(1B.8)16
例题:
(7F3.9)16=(0111011110011.1001)2=(133303.21)4
比较下列数的大小:(1.1)2 (1.1)4 (1.1)8 (1.1)10(1.1)15 (1.1)16
二.编码
1.含义:同一套符号按一定规则编排起来,用以表示信息(数字或字符)的过程
数字:1,2,…9,0
字母:a,…z,A,…Z
算符:+,-,*,/,=,〈,[,],(,),…
码位,码元,二进制中可用 bite表示
(1000)2(20)4(10)8
4个码位 2个 2个
2. 常用编码
①二进制编码------用若干二进制数表示信息的过程
a. 自然二进制码------用二进制数N位 从全0开始,逐个加1,自至全1来表示信息
n=1 0 |
n=2 00 |
n=3 000 |
n=n 000…0(n个0) |
1 | 01 | 001 |
.
|
10 | …… |
.
|
|
11 | …… | 111…1(n个1) |
优点:简便,清晰
缺点:可靠性差,如011#FormatImgID_8#100(相当于十进制数3变化到4)要变化三位码元,很可能产生瞬时错误码!
b. 二进制循环码(GRAY码,格雷码.
n=1
|
|
n=2
|
|
n=3
|
|
|
|
0
|
|
00
|
|
000
|
0
|
|
1
|
|
01
|
|
001
|
1
|
|
|
|
11
|
|
011
|
3
|
|
|
|
10
|
|
010
|
2
|
|
|
|
|
|
110
|
6
|
|
|
|
|
|
111
|
7
|
|
|
|
|
|
101
|
5
|
优点:可靠性编码
缺点:不容易记忆(利用反射特性)
相邻码——表示相邻十进制数的编码
相邻码间距——码元取值不同的总数
②二----十进制编码(BCD码,BINGRY,LODID)
用若干位二进制数来表示十进制数的编码-----用四位二进制数
a. 1有权BCD码
(i)8421BCD码 十进制
十进制
|
b3
|
b2
|
b1
|
b0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
2
|
0
|
0
|
1
|
0
|
3
|
0
|
0
|
1
|
1
|
4
|
0
|
1
|
0
|
0
|
5
|
0
|
1
|
0
|
1
|
6
|
0
|
1
|
1
|
0
|
7
|
0
|
1
|
1
|
1
|
8
|
1
|
0
|
0
|
0
|
9
|
1
|
0
|
0
|
1
|
D=b3*W3+b2*W2+b1*W1+b0*W0+C
(ii)5421码
十进制 |
b3
|
b2
|
b1
|
b0
|
|
0
|
0
|
0
|
0
|
0
|
|
1
|
0
|
0
|
0
|
1
|
|
2
|
0
|
0
|
1
|
0
|
|
3
|
0
|
0
|
1
|
1
|
|
4
|
0
|
1
|
0
|
0
|
|
5
|
1
|
0
|
0
|
0
|
(0101)
|
6
|
1
|
0
|
0
|
1
|
(0110)
|
7
|
1
|
0
|
1
|
0
|
(0111)
|
8
|
1
|
0
|
1
|
1
|
|
9
|
1
|
1
|
0
|
0
|
|
有些编码形式不是唯一的,因此无效码(非法码)也不一样
b. 无权BCD码
(i)BCD格雷码(循环码)
十进制
|
G3
|
G2
|
G1
|
G0
|
|
0
|
0
|
0
|
0
|
0
|
|
1
|
0
|
0
|
0
|
1
|
|
2
|
0
|
0
|
1
|
1
|
|
3
|
0
|
0
|
1
|
0
|
|
4
|
0
|
1
|
1
|
0
|
|
5
|
0
|
1
|
1
|
1
|
|
6
|
0
|
1
|
0
|
1
|
|
7
|
0
|
1
|
0
|
0
|
|
8
|
1
|
1
|
0
|
0
|
|
9 与0000循环改为1000
|
|