多线程并发处理方式
1. 捕获InterruptedException错误
请检查下面的代码片段:
public class Task implements Runnable {
private final BlockingQueue queue = 。。.;
@Override
public void run() {
while (!Thread.currentThread().isInterrupted()) {
String result = getOrDefault(() -》 queue.poll(1L, TimeUnit.MINUTES), “default”);
//do smth with the result
}
}
T getOrDefault(Callable supplier, T defaultValue) {
try {
return supplier.call();
} catch (Exception e) {
logger.error(“Got exception while retrieving value.”, e);
return defaultValue;
}
}
}
代码的问题是,在等待队列中的新元素时,是不可能终止线程的,因为中断的标志永远不会被恢复:
运行代码的线程被中断。
BlockingQueue # poll()方法抛出InterruptedException异常,并清除了中断的标志。
while中的循环条件 (!Thread.currentThread().isInterrupted())的判断是true,因为标记已被清除。
为了防止这种行为,当一个方法被显式抛出(通过声明抛出InterruptedException)或隐式抛出(通过声明/抛出一个原始异常)时,总是捕获InterruptedException异常,并恢复中断的标志。
T getOrDefault(Callable supplier, T defaultValue) {
try {
return supplier.call();
} catch (InterruptedException e) {
logger.error(“Got interrupted while retrieving value.”, e);
Thread.currentThread().interrupt();
return defaultValue;
} catch (Exception e) {
logger.error(“Got exception while retrieving value.”, e);
return defaultValue;
}
}
2.使用特定的执行程序来阻止操作
因为一个缓慢的操作而使整个服务器变得无响应,这通常不是开发人员想要的。不幸的是,对于RPC,响应时间通常是不可预测的。
假设服务器有100个工作线程,有一个端点,称为100 RPS。在内部,它发出一个RPC调用,通常需要10毫秒。在某个时间点,此RPC的响应时间变为2秒,在峰值期间服务器能够做的惟一的一件事就是等待这些调用,而其他端点则无法访问。
@GET
@Path(“/genre/{name}”)
@Produces(MediaType.APPLICATION_JSON)
public Response getGenre(@PathParam(“name”) String genreName) {
Genre genre = potentiallyVerySlowSynchronousCall(genreName);
return Response.ok(genre).build();
}
解决这个问题最简单的方法是提交代码,它将阻塞调用变成一个线程池:
@GET
@Path(“/genre/{name}”)
@Produces(MediaType.APPLICATION_JSON)
public void getGenre(@PathParam(“name”) String genreName, @Suspended AsyncResponse response) {
response.setTimeout(1L, TimeUnit.SECONDS);
executorService.submit(() -》 {
Genre genre = potentiallyVerySlowSynchronousCall(genreName);
return response.resume(Response.ok(genre).build());
});
}
3. 传MDC的值
MDC(Mapped Diagnostic Context)通常用于存储单个任务的特定值。例如,在web应用程序中,它可能为每个请求存储一个请求id和一个用户id,因此MDC查找与单个请求或整个用户活动相关的日志记录变得更加容易。
2017-08-27 14:38:30,893 INFO [server-thread-0] [requestId=060d8c7f, userId=2928ea66] c.g.s.web.Controller - Message.
可是如果代码的某些部分是在专用线程池中执行的,则线程(提交任务的线程)中MDC就不会被继续传值。在下面的示例中,第7行的日志中包含“requestId”,而第9行的日志则没有:
@GET
@Path(“/genre/{name}”)
@Produces(MediaType.APPLICATION_JSON)
public void getGenre(@PathParam(“name”) String genreName, @Suspended AsyncResponse response) {
try (MDC.MDCCloseable ignored = MDC.putCloseable(“requestId”, UUID.randomUUID().toString())) {
String genreId = getGenreIdbyName(genreName); //Sync call
logger.trace(“Submitting task to find genre with id ‘{}’。”, genreId); //‘requestId’ is logged
executorService.submit(() -》 {
logger.trace(“Starting task to find genre with id ‘{}’。”, genreId); //‘requestId’ is not logged
Response result = getGenre(genreId) //Async call
.map(artist -》 Response.ok(artist).build())
.orElseGet(() -》 Response.status(Response.Status.NOT_FOUND).build());
response.resume(result);
});
}
}
这可以通过MDC#getCopyOfContextMap()方法来解决:
。。.
public void getGenre(@PathParam(“name”) String genreName, @Suspended AsyncResponse response) {
try (MDC.MDCCloseable ignored = MDC.putCloseable(“requestId”, UUID.randomUUID().toString())) {
。。.
logger.trace(“Submitting task to find genre with id ‘{}’。”, genreId); //‘requestId’ is logged
withCopyingMdc(executorService, () -》 {
logger.trace(“Starting task to find genre with id ‘{}’。”, genreId); //‘requestId’ is logged
。。.
});
}
}
private void withCopyingMdc(ExecutorService executorService, Runnable function) {
Map
4.更改线程名称
为了简化日志读取和线程转储,可以自定义线程的名称。这可以通过创建ExecutorService时用一个ThreadFactory来完成。在流行的实用程序库中有许多ThreadFactory接口的实现:
com.google.common.util.concurrent.ThreadFactoryBuilde+r in Guava.
org.springframework.scheduling.concurrent.CustomizableThreadFactory in Spring.
org.apache.commons.lang3.concurrent.BasicThreadFactory in Apache Commons Lang 3.
ThreadFactory threadFactory = new BasicThreadFactory.Builder()
.namingPattern(“computation-thread-%d”)
.build();
ExecutorService executorService = Executors.newFixedThreadPool(numberOfThreads, threadFactory);
尽管ForkJoinPool不使用ThreadFactory接口,但也支持对线程的重命名:
ForkJoinPool.ForkJoinWorkerThreadFactory forkJoinThreadFactory = pool -》 {
ForkJoinWorkerThread thread = ForkJoinPool.defaultForkJoinWorkerThreadFactory.newThread(pool);
thread.setName(“computation-thread-” + thread.getPoolIndex());
return thread;
};
ForkJoinPool forkJoinPool = new ForkJoinPool(numberOfThreads, forkJoinThreadFactory, null, false);
将线程转储与默认命名进行比较:
“pool-1-thread-3” #14 prio=5 os_prio=31 tid=0x00007fc06b19f000 nid=0x5703 runnable [0x0000700001ff9000]
java.lang.Thread.State: RUNNABLE
at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.TaskHandler.compute(TaskHandler.java:16)
。。.
“pool-2-thread-3” #15 prio=5 os_prio=31 tid=0x00007fc06aa10800 nid=0x5903 runnable [0x00007000020fc000]
java.lang.Thread.State: RUNNABLE
at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.HealthCheckCallback.recordFailure(HealthChecker.java:21)
at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.HealthChecker.check(HealthChecker.java:9)
。。.
“pool-1-thread-2” #12 prio=5 os_prio=31 tid=0x00007fc06aa10000 nid=0x5303 runnable [0x0000700001df3000]
java.lang.Thread.State: RUNNABLE
at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.TaskHandler.compute(TaskHandler.java:16)
。。.
与自定义命名进行比较:
“task-handler-thread-1” #14 prio=5 os_prio=31 tid=0x00007fb49c9df000 nid=0x5703 runnable [0x000070000334a000]
java.lang.Thread.State: RUNNABLE
at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.TaskHandler.compute(TaskHandler.java:16)
。。.
“authentication-service-ping-thread-0” #15 prio=5 os_prio=31 tid=0x00007fb49c9de000 nid=0x5903 runnable [0x0000700003247000]
java.lang.Thread.State: RUNNABLE
at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.HealthCheckCallback.recordFailure(HealthChecker.java:21)
at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.HealthChecker.check(HealthChecker.java:9)
。。.
“task-handler-thread-0” #12 prio=5 os_prio=31 tid=0x00007fb49b9b5000 nid=0x5303 runnable [0x0000700003144000]
java.lang.Thread.State: RUNNABLE
at com.github.sorokinigor.article.tipsaboutconcurrency.setthreadsname.TaskHandler.compute(TaskHandler.java:16)
。。.
想象一下,可能会不止3个线程。
5. 使用LongAdder计数器
在高竞争的情况下,会采用java.util.concurrent.atomic.LongAdder进行计数,而不会采用AtomicLong/AtomicInteger。LongAdder可以跨越多个单元间仍保持值不变,但是如果需要的话,也可以增加它们的值,但与父类AtomicXX比较,这会导致更高的吞吐量,也会增加内存消耗。
LongAdder counter = new LongAdder();
counter.increment();
。。.
long currentValue = counter.sum();
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%
下载地址
多线程并发处理方式下载
相关电子资料下载
- 一文详解ZGC关键技术 26
- AMD推出锐龙 Threadripper 7000系列处理器 171
- 如何使用pthread_barrier_xxx系列函数来实现多线程之间的同步? 29
- SpringBoot物理线程、虚拟线程、Webflux性能比较 37
- SV线程的使用和控制 121
- Python 如何获取旅游景点信息 82
- 新一轮制裁,摩尔线程、壁仞等IC公司上实体清单,英伟达AI芯片限制出售! 927
- 英伟达H800和A800将禁运!美国将摩尔线程、壁仞列入贸易管制“黑名单” 301
- i9-14900K/i7-14700K处理器首发评测 134
- 酷睿i7-14700K处理器性能测试分析 115