您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

数据分析在产品设计中的应用实例分析

大小:0.5 MB 人气: 2017-09-30 需要积分:1
本文试抛一砖,将通过酒店产品设计中的两个案例来介绍数据在携程产品设计过程中的应用实践,以及携程所构建的专业数据体系。
  产品设计的数据观
  作为互联网产品设计者,首先要树立对数据的正确认知,我们称之“ 数据观”。
  数据贯穿设计全过程,产品设计要学会用数据说话数据是人创造的,只有人会解释和分析数据明确业务/设计目标,根据需求来采集、分析数据上线后关注数据变化,发现问题,快速迭代持续监测、评估数据,以检验设计目标是否达成数据不能替代用户体验,改进仍需结合多种手段
  而要让数据分析真正有效地推进产品设计,又有以下必备条件:
  首先是 数据源,“巧妇难为无米之炊”,完善的数据采集、展示体系,是进行分析的先决条件。
  然后是 数据感,也就是从数据中捕捉、挖掘、分析的能力。林彪当年在辽沈战役听取一场遭遇战的战报时,敏锐地发现缴获短枪长枪之比、小车大车之比、俘虏军官士兵之比,都显著高于平常,于是判断敌军指挥所就在附近。果然,经专门部署,在后续战斗中俘获了主将廖耀湘。林彪并没有大数据分析工具,但是他有经验的积累,数据感出色,当数据异于平常时就能做出准确预判。
  再次是对数据的 分析法,常见的专业方法有多维分析、路径分析、留存分析、回访分析等,将多种方法结合使用会更有助提升数据支撑的深度。
  最后,如何将从数据分析中洞见的用户行为与态度,在设计中予以体现,那就需要设计师的设计力。
  携程的数据体系
  数据分析在携程有着重要地位,这或许与携程创始人梁建章系出计算机专业又曾在Oracle任职的经历有关。在携程,数据既是考量工作绩效的指标,也是未来业务拓展的探针。
  在携程产品的整个生命周期中,数据始终贯穿其间。始自一个创意的诞生,需求分析阶段就有基于数据的诊断性研究;随后在产品设计环节,又会有数据做出价值预估,并给出目标建议;在产品上线初期,海量数据环境的A/B测试,数据波动关注,一直到产品上线稳定后的运营监控、定制报表,数据无一不是重要的考察因素。
  工欲善其事,必先利其器。携程平台打造了多款数据利器,帮助员工善用数据:
  利器之一,UIP用户洞察平台。它将主要数据指标一网打尽,产品设计可根据需要,基于频道、页面、地理位置、提交渠道、流量来源等,逐一查看各种PV、UV指标,以及跳出率、二跳率、退出率、转化率、页面停留时间等数据。利器之二,页面点击插件。点击页面上的每个模块,可以查看到它的点击概要、访问趋势、统计数据明细、浏览器统计、页面热力图等信息。利器之三,A/B 测试,也就是切取部分流量,采用科学取样方法,让新旧设计版本在同一时间段同质的用户群体内“以实践来检验”,直观地从转化率数据评判出设计的价值。这种方法稳定、高效,目前在酒店产品线已得到广泛应用,测试的成功率达到15%以上。由于A/B测试仅在一定样本内进行,不致对全局业务产生影响,于是设计师获得更大空间去发挥他们的创意,敢于试错;数据比对会帮助他们不断修正设计中的方法偏差。当然,A/B测试着力相对短期,不能过度依赖,且更适用海量用户的测试。利器之四是定制开发的KPI Portal,它根据各个项目的具体需求,将与项目相关的各类数据指标集成在一起,做出趋势看板,供项目中人快速、直观地了解项目目标达成情况。有趣的是,这些指标还可换算成收益!
  然而光有这些数据分析工具,不免还有所欠缺。比如酒店详情页上展示的房型和设施信息,要从点击数据上分析用户对它们优先级的排列和分组的看法,就非常困难。因为定性的问题很难通过定量的分析工具来得到解决。此时,携程的用户研究团队就受命登场了。
  用研团队会通过对典型用户的访谈、焦点小组、卡片分类、眼动追踪等一系列专业手段,挖掘出用户的行为与态度特征,帮助产品设计理解表象行为后的内在原因,为优化设计提供依据和佐证。
  数据分析在产品设计中的应用实例分析
  携程民宿频道的设计进化或许就可归因于这种定量与定性分析的结合。

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!