您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于知识图谱的QA系统研究

大小:0.6 MB 人气: 2017-10-10 需要积分:1
 QA系统用于回答人们以自然语言形式提出的问题,其在互联网、通信及医疗等领域获得显著的成功。其中,IBM研发的Watson系统就在与人类的答题比赛中获胜并首次获得100万美金奖励;苹果的Siri系统成功运行于iPhone之中,改变人与iPhone的交流方式;还有很多其它的公司也成功研发文字或语音的QA系统,比如谷歌的Google Now、亚马逊的Alexa和微软的Cortana;另外,在医学上面如Health Care,QA系统也帮助医生与患者得到及时的交互。
  QA系统依据其回答语料可以分为两类,一类是常见的纯文本形式,如网络文档、问答社区内容、搜索引擎结果、百科数据等。另一类则是知识图谱,通常以RDF三元组的形式结构化表示。由于结构化的特点,QA系统相比纯文本语料,往往可以提供更加精确和简练的结果。另一方面,近些年涌现出了大批十亿甚至更大规模的知识图谱,包括WolframAlpha、Google Knowledge Graph、Freebase等。这些知识图谱的出现保证基于其的问答系统的覆盖率。所以,当前基于知识图谱的开放领域QA系统是可行的。
  系统架构
  QA系统分为三层架构模型,分别为实体、语言和应用层,如下图所示。
  基于知识图谱的QA系统研究
  其中最下层为实体层,其为上层模型提供最基础的计算单元,包括了语义社区搜索、语义消歧义和同现网络模块;中间层为语言层,作为连接实体层和应用层的桥梁,其包含了具有一定语义信息的短文本;最上层则为集成的QA系统,包括了问题模板和深度学习模块。
  实体层模型研究
  语义社区搜索
  基于知识图谱的QA系统研究
  如上图所示,节点即代表单词在语义社区网络中的语义,边则为单词与单词之间的关系,以此模型即可找到一个单词所在的社区,以及单词之间的相似度,如下图所示pot和bowl为同一语义社区,有很高的相似度;pot和plate为不同的语义社区,其中两个有两个单词交集,为中等相似度;pot和tube为不同的语义社区,其中只有一个单词交集,为低等相似度

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!