您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

Kubernetes和Mesos集成的优势与原理

大小:0.8 MB 人气: 2017-10-12 需要积分:1
 Kubernetes是一个docker集群管理工具,主要包含资源管理,部署运行,服务发现,扩容缩容等功能,帮助用户把所有的应用都部署在Docker Container里边,Kubernetes可以看成是一个mini的PaaS平台,主要用来帮助用户管理Docker Container。
  Apache Mesos是一款开源集群管理软件,由加州大学伯克利分校的AMPLab首先开发;支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等架构。Mesos 为上层的应用框架提供了资源共享,资源监控,动态扩容等集群管理功能。由于其稳定、通用等特性,越来越受到大型公司的青睐,例如Twitter、Facebook、Apple等都在生产环境中使用Mesos进行集群管理。
  集成优势
  Kubernetes worker节点自动扩展
  一个普通的Kubernetes集群会包含若干台Master和Worker节点,这些都需要用户手动或者通过脚本去安装,如果想实现Kubernets Auto Scaling的话,需要将Kubernetes部署在一个IaaS的云平台之上,通过云平台对Kubernetes提供资源,同时对Kubernets监控,根据负载进行自动扩展,但是Kubernetes和云平台的集成稍显厚重。
  Kubernetes和Mesos集成完成之后,也可以实现Worker节点的自动扩展,所有Worker节点都是自动创建的,不需要用户手动干预。详细信息在“集成原理”会介绍。
  资源共享
  一旦Mesos和Kubernetes集成完成之后,Kubernetes会作为Mesos的一个Framework运行在Mesos之上。因为一个Mesos可以同时为多个Framework提供资源,当Kubernetes作为Mesos的一个Framework之后,Mesos就可以实现Kubernetes和其它Framework之间的资源共享。
  集成原理
  Kubernetes和Mesos集成的优势与原理
  在Kuberntes与Mesos的集成中,Kubernetes的Scheduler会作为Mesos的Framework对Pod与Offer进行匹配;而Kubernetes 的 kubelet 与 kube-proxy则会被新增加的Mesos Executor进行管理来启动相应的Worker并对网络进行配置,从而达到动态扩容的需求。
  Kubernetes 与 Mesos集成中包含了多个方面内容;本文的将主要集中介绍资源调度相关部分,后续会有文章介绍其它集成点,如资源执行,环境搭建,测试等等。
  Kubernetes Worker节点的创建
  K8sm的kubernetes worker节点是动态创建的,不需要用户手动创建。创建流程如下:
  1) 当k8sm的framework注册成功后,马上就会收到Mesos发来的Offer。因为Mesos的Offer都是Coarse-grained Offer,所以当前发来的Offer会包含整个host的全部资源。
  2) K8sm scheduler收到Offer后,会首先检查当前的Offer是不是合法的,所谓的合法Offer,需要满足两个条件,第一个就当前的这个Offer的资源来自于Kubernetes的某个worker节点,第二个是当前Offer的ExeuctorId必须是没有或者只有一个,并且Offere的ExeuctorId和k8sm scheduler启动时设置的ExeuctorId相同。但是在k8s刚注册的时候,是没有任何worker节点的,这时候k8sm的scheduler做的事情就是Decline这个Offer,即把这个Offer返回给Mesos,但是会把这个Offer对应的host为Kubernetes创建一个worker节点。一个合法的Offer需要满足一下几个条件:
  ● 当前Offer的资源来自于Kubernetes的某个worker节点。
  ● 当前Offer的ExeuctorId必须是没有或者只有一个,并且Offer的ExeuctorId和k8sm scheduler启动时设置的ExeuctorId相同。
  ● 如果当前Offer中只有一个ExecutorId,是否有效合法取决Agent的属性是否有变化:如果属性没有变化,认为Offer是合法的;否则认为是无效的。
  3) 如此周而复始,一直将Mesos集群中所有的节点加入Kubernetes的worker节点。
  4) 当有新的Mesos节点加入Mesos集群时,新加入的节点也会给k8sm scheduler发Offer,k8sm scheduler会将新加入的Mesos节点创建为一个Kunernetes的worker节点。
  5) 所有的Kubenetes worker节点都会存在etcd中。用户可以通过命令“kubectl get nodes”或者直接使用“etcdctl”查看Kubenetes中的所有worker节点。
  当Kubernetes Worker节点创建完成后,Mesos再发Offer时,如果发现当前Offer的Host是Kubernetes的一个Worker节点,k8sm scheduler就会把这个Offer作为一个合法的Offer,同时将该Offer缓存起来,默认的缓存时间是5s.
  Offer生命周期管理
  Framework 实现了 Mesos 的 SchedulerDriver接口;该接口用于Mesos 和 Framework之间的交互。当k8sm scheduler启动后,会创建一个名为 OfferStorage 的 go routine 用于 Offer 的生命周期管理。下面会根据Offer的创建,使用及销毁三个阶段对Offer进行分析。
  Offer的创建
  如上文描述的,当Framework注册到Mesos上后,Mesos会定期 (–allocation_interval) 向Framework发送Offer。k8sm scheduler 通过以下的原则检测收到的Offer是否合法;如果合法,则放入Offer的缓存中;否则把资源返回给Mesos。
  当对Offer进行缓存时,会有两个队列对Offer信息进行存储:delayed 和 Offers。Offers 用于Pod的运行;而当Offer销毁时会使用 delayed 队列;具体的销毁过程会在”Offer的销毁”进行分析。
  Offer的使用
  在k8sm scheduler启动后,会有一个go routine周期性的检查是不是有新的Pod创建请求。如果有新的Pod创建请求,将这个请求放入k8sm scheduler的任务队列。k8sm scheduler会从这个任务队列取出需要创建的Pod进行调度,调度的主要目的是为当前的Pod找到合适的服务器来运行。
  因为Kubernetes是作为Mesos的framework来运行的,所以对Offer的使用主要由两个API来处理:ResourceOffers和LaunchTask。但是对Offer的处理可以主要分为三部分:获取Offer,关联Task和Offer,执行task。每一个Task对应一个Pod。
  获取Offer
  Offer主要是通过ResourceOffer获取的。这个API是Mesos Framework的API,所有的Frameworkd都需要实现这个API用来接收从Mesos发送来的Offer。前边已经讲了ResourceOffer会触发添加新的Kuernetes worker节点,同时这个Offer会被缓存起来,缓存时间可以通过参数配置,默认是5s。
  关联Task和Offer
  在k8sm scheduler启动后,会有一个go routine周期性的检查是不是有新的Pod创建请求。如果有新的Pod创建请求,将这个请求放入k8sm scheduler的任务队列。k8sm scheduler会从这个任务队列取出需要创建的Pod进行调度。
  在对Pod进行调度的时候,k8sm scheduler回选择将Task和Offer关联。k8sm scheudler现在默认是FCFS算法调度。FCFS对Pod进行调度的时候,主要是为Task挑选合适的Offer,对当前缓存的Offer逐个进行校验,直到为当前的Task选出合适Offer。对Offer的选择主要通过四个方法来进行检验:
  1) 第一个校验是Node的校验,主要是检查当前Offer的host是不是可以被当前的Pod使用。因为Pod在创建的时候,可以直接在Pod的YAML文件中指定创建的host或者NodeSelector,Node的校验主要是检查当前Offer的host是不是可以为这个Pod所用。如果当前的Host可以为Pod所用,那么当前的Node校验就会把Host作为随后校验的参数;反之则校验下一个Offer。
  2) 第二个校验是Pod的资源校验,主要是检查当前的Host是不是有足够的资源启动Pod。现在检查的主要是CPU和Memeory。如果资源足够,进行下一个校验。
  3) 第三个校验主要是端口的校验,主要是检查端口冲突。检查当前Host上的端口是不是可以为Pod所用。
  4) 第四个校验,也就是最后一个校验,主要是校验Executor。K8sm scheduler主要是使用一个executor管理了所有的task,所以如果Executor校验发现当前Offer中有两个Exeuctor ID,会返回错误,校验下一个Offer;如果发现当前Offer已经包含一个Executor ID了,这时候直接返回,当前Offer可用;如果发现当前Offer中不包含Executor ID,还需要查一下当前的Offer有没有足够的资源启动Executor,如果有足够的资源启动Executor,当前Offer可用。
  以上四个校验主要是检查一个Offer是否可用和一个Task绑定。如果检验完成后,Offer可用,k8sm scheduler就会把该Offer和当前Task关联起来。
  在Task Launch之前,还会检查下当前的Task是不是关联一个Offer,如果Task没有关联Offer,k8sm scheduler会返回错误,因为Task在运行的时候,必须从某个Offer获取资源才可以运行。
  LaunchTask
  当Task和Offer关联完成后,k8sm scheduler就开始执行Task了。在执行LaunchTasks之前,需要对Task信息按照Mesos需要的格式进行构建,例如设置Task名字,Task需要的SlaveId,Task需要的资源,Task ID,Task的Executor信息等等。接下来就调用Mesos Framework API LaunchTasks去创建Pod了,具体创建Pod的工作由k8sm的Executor执行。
  在Worker节点,Mesos 的 Agent 会负责Executor管理。k8sm的Executor会先创建一个名为MinionServer的对象来负责proxy 和 executor 的管理:proxy通过nsenter, iptables等对网络进行配置;而executor则实现了Mesos Executor接口,用于接收并执行作业,例如在Docker中启动Pod。限于篇幅,网络配置和Pods的执行细节会以后的文章会进行具体的描述。

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!