一种聚类个数自适应的聚类方法(简称SKKM)
大小:0.82 MB 人气: 2017-11-03 需要积分:0
标签:SKKM(1931)
在数据挖掘算法中,K均值聚类算法是一种比较常见的无监督学习方法,簇间数据对象越相异,簇内数据对象越相似,说明该聚类效果越好。然而,簇个数的选取通常是由有经验的用户预先进行设定的参数。本文提出了一种能够自动确定聚类个数,采用SSE和簇的个数进行度量,提出了一种聚类个数自适应的聚类方法(简称:SKKM)。通过UCI数据和仿真数据对象的实验,对SKKM算法进行了验证,实验结果表明改进的算法可以快速的找到数据对象中聚类个数,提高了算法的性能。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%