您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于Bagging决策树优化算法

大小:0.84 MB 人气: 2017-11-21 需要积分:0

  针对经典C4.5决策树算法存在过度拟合和伸缩性差的问题,提出了一种基于Bagging的决策树改进算法,并基于MapReduce模型对改进算法进行了并行化。首先,基于Bagging技术对C4.5算法进行了改进,通过有放回采样得到多个与初始训练集大小相等的新训练集,并在每个训练集上进行训练,得到多个分类器,再根据多数投票规则集成训练结果得到最终的分类器;然后,基于MapReduce模型对改进算法进行了并行化,能够并行化处理训练集、并行选择最佳分割属性和最佳分割点,以及并行生成子节点,实现了基于MapReduce Job工作流的并行决策树改进算法,提高了对大数据集的分析能力。实验结果表明,并行Bagging决策树改进算法具有较高的准确度与敏感度,以及较好的伸缩性和加速比。

基于Bagging决策树优化算法

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!