您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

不相关判别分析算法在人脸识别中应用

大小:0.75 MB 人气: 2017-11-22 需要积分:1

  对高维数据降维并选取有效特征对分类起着关键作用。针对人脸识别中存在的高维和小样本问题,从特征选取和子空间学习入手,提出了一种L2.1范数正则化的不相关判别分析算法。该算法首先对训练样本矩阵进行奇异值分解;然后通过一系列变换,将原非线性的Fisher鉴别准则函数转化为线性模型;最后加入L2.1,范数惩罚项进行求解,得到一组最佳鉴别矢量。将训练样本和测试样本投影到该低维子空间中,利用最近欧氏距离分类器进行分类。由于加入了L2.1范数惩罚项,该算法能使特征选取和子空间学习同时进行,有效改善识别性能。在ORL、YaleB及PIE人脸库上的实验结果表明,算法在有效降维的同时能进一步提高鉴别能力。
 

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!