基于密度的K-means算法在聚类数目中应用
大小:1.00 MB 人气: 2017-11-25 需要积分:1
针对传统的K-means算法无法预先明确聚类数目,对初始聚类中心选取敏感且易受离群孤点影响导致聚类结果稳定性和准确性欠佳的问题,提出一种改进的基于密度的K-means算法。该算法首先基于轨迹数据分布密度和增加轨迹数据关键点密度权值的方式选取高密度的轨迹数据点作为初始聚类中心进行K-means聚类,然后结合聚类有效函数类内类外划分指标对聚类结果进行评价,最后根据评价确定最佳聚类数目和最优聚类划分。理论研究与实验结果表明,该算法能够更好地提取轨迹关键点,保留关键路径信息,且与传统的K-means算法相比,聚类准确性提高了28个百分点,与具有噪声的基于密度的聚类算法相比,聚类准确性提高了17个百分点。所提算法在轨迹数据聚类中具有更好的稳定性和准确性。
非常好我支持^.^
(0) 0%
不好我反对
(0) 0%
下载地址
基于密度的K-means算法在聚类数目中应用下载
相关电子资料下载
- 对新辅助TCHP治疗响应的HER2+乳腺癌空间蛋白质组特征 547
- 使用轮廓分数提升时间序列聚类的表现 316
- 基于K-means聚类算法的图像分割 1113
- 介绍一种基于最小化平方误差的聚类算法 498
- 介绍一种基于分层聚类方法的木马通信行为检测模型 1060
- 深度学习聚类的综述 780
- 聚类分析中的机器学习与统计方法综述(二) 679
- 如何在 Python 中安装和使用顶级聚类算法 415
- 聚类分析中的机器学习与统计方法综述(一) 638
- 物体检测与跟踪算法 974