您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于聚类协同过滤推荐算法优化

大小:0.90 MB 人气: 2017-11-27 需要积分:1

  作为重要的个性化推荐算法之一,协同过滤推荐算法有其独特的优势,但同时存在数据稀疏性、冷启动和扩展性问题。针对数据稀疏性问题,对项目相似度进行改进,利用基于项目的协同过滤对原始评分矩阵进行填充,以此降低数据稀疏性对推荐质量的影响。针对冷启动问题,采用基于用户和项目属性分别进行聚类的方法,通过聚类模型建立新用户和新项目与现有用户和现有项目之间的联系,根据对现有用户和现有项目的推荐预测新用户和新项目的推荐。针对扩展性问题,利用云平台Hadoop的MapReduce框架完成相关算法的并行化,以此解决传统协同过滤推荐算法面临的严重扩展性问题。实验表明,改进后的算法较好地解决了以上问题。

基于聚类协同过滤推荐算法优化

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!