您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于Spark的ItemBased推荐算法性能优化

大小:0.91 MB 人气: 2017-11-30 需要积分:2

  MapReduce计算场景下,复杂的大数据挖掘类算法通常需要多个MapReduce作业协作完成,但多个作业之间严重的冗余磁盘读写及重复的资源申请操作,使得算法的性能严重降低。为提高ItemBased推荐算法的计算效率,首先对MapReduce平台下ItemBased协同过滤算法存在的性能问题进行了分析;在此基础上利用Spark迭代计算及内存计算上的优势提高算法的执行效率,并实现了基于Spark平台的ItemBased推荐算法。实验结果表明:当集群节点规模分别为10与20时,算法在Spark中的运行时间分别只有MapReduce中的25.6%及30. 8%,Spark平台下的算法相比MapReduce平台,执行效率整体提高3倍以上。
 

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!