您好,欢迎来电子发烧友网! ,新用户?[免费注册]

您的位置:电子发烧友网>源码下载>数值算法/人工智能>

基于SAX的时间序列分类

大小:0.81 MB 人气: 2017-11-30 需要积分:2

  分类问题是数据挖掘中的基本问题之一,时间序列的特征表示及相似性度量是时间序列数据挖掘中分类、聚类及模式发现等任务的基础。SAX方法是一种典型的时间序列符号化表示方法,在采用该方法的基础上对时间序列进行分类,不仅可以有效地降维、降噪,而且具有简单、直观等特点,但是该方法有可能造成信息损失并影响到分类结果的准确性。为了弥补信息损失对分类结果的影响,采用了集成学习中大多数投票方法来弥补BOP表示后的信息损失,从而提高整个分类器的效率。针对一些样本在BOP表示中都损失了相似的重要信息,以至于大多数投票无法进一步提高分类效率的问题,进一步提出了结合集成学习中AdaBoost算法,通过对训练样本权重的调整,从而达到以提高分类器性能来弥补信息损失的效果。实验结果表明,将BOP方法与集成学习相结合的方法框架,不仅能很好地处理SAX符号化表示中的信息损失问题,而且与已有方法相比,在分类准确度方面也有显著的提高。
 

非常好我支持^.^

(0) 0%

不好我反对

(0) 0%

      发表评论

      用户评论
      评价:好评中评差评

      发表评论,获取积分! 请遵守相关规定!